Answer:
The driver hits the stationery dog because the applied force is less than required force
Explanation:
Kinetic energy will be given by
where m is the mass of the vehicle and v is the speed/velocity of the vehicle.
Substituting 800 Kg for m and 20 m/s for v we obtain
Frictional force by vehicle pads is given by
where d is the distance moved
Substituting 160000 for KE and 50 m for d we obtain
Therefore, the vehicle hits the dog since the required force is 3200N but the driver applied only 2000 N
Circularity system........…….......
Answer:
the ratio of Hank's mass to Harry's mass is 0.7937 or [ 0.7937 : 1
Explanation:
Given the data in the question;
Hank and Harry are two ice skaters, since both are on top of ice, we assume that friction is negligible.
We know that from Newton's Second Law;
Force = mass × Acceleration
F = ma
Since they hold on to opposite ends of the same rope. They have the same magnitude of force |F|, which is the same as the tension in the rope.
Now,
Mass × Acceleration = Mass × Acceleration
so
Mass / Mass = Acceleration / Acceleration
given that; magnitude of Hank's acceleration is 1.26 times greater than the magnitude of Harry's acceleration,
Mass / Mass = 1 / 1.26
Mass / Mass = 0.7937 or [ 0.7937 : 1 ]
Therefore, the ratio of Hank's mass to Harry's mass is 0.7937 or [ 0.7937 : 1 ]
Answer:
yes
Explanation:
objects with constant velocity also have zero net external force. this means the forces on the object are balanced. this mean they are in equilibrium
Answer:
67
Explanation:
- The atomic number (Z) of an atom is equal to the number of protons in the nucleus
- The mass number (A) of an atom is equal to the sum of protons and neutrons in the nucleus
Therefore, calling p the number of protons and n the number of neutrons, for element X we have:
Z = p = 23
A = p + n = 90
Substituting p=23 into the second equation, we find the number of neutrons:
n = 90 - p = 90 - 23 = 67