The balanced equation for the reaction is as follows;
2H₂S + SO₂ —> 2H₂O + 3S
Stoichiometry of H₂S to SO₂ is 2:1
Limiting reactant is fully used up in the reaction and amount of product formed depends on amount of limiting reactant present.
Number of H₂S moles - 8.0 g / 34 g/mol = 0.24 mol of H₂S
Number of SO₂ moles = 12.0 g / 64 g/mol = 0.188 mol of SO₂
According to molar ratio of 2:1
If we assume H₂S to be the limiting reactant
2 mol of H₂S reacts with 1 mol of SO₂
Therefore 0.24 mol of H₂S requires - 1/2 x 0.24 = 0.12 mol of SO₂
But 0.188 mol of SO₂ is present therefore SO₂ is in excess and H₂S is the limiting reactant.
H₂S is the limiting reactant
Amount of S produced depends on amount of H₂S present
Stoichiometry of H₂S to S is 2:3
2 mol of H₂S forms 3 mol of S
Therefore 0.24 mol of H₂S forms - 3/2 x 0.24 mol = 0.36 mol of S
Mass of S produced = 0.36 mol x 32 g/mol = 11.5 g of S is produced
The compound HClO4, when placed in water, will dissociate into the ions, H+ and ClO4-. Therefore, the 2.0 M solution will also form 2.0 M H+. The pH is calculated through the equation,
pH = -log[H+]
Substituting,
pH = -log[2] = -0.3
Thus, the pH of the solution is -0.3.
AgF consists of Ag+ and F- ions, which are fully dissociated in aqueous solution. When solving electrolysis problems, it is important to remember that water itself may also be a subject to electrolysis. Therefore, determining which species is oxidized and which species is reduced depends on selecting the processes that are the most energetically favorable. The most preferred reduction reaction will be Ag+ + e- = Ag (Emf=0.7996 V) which will occur at the cathode, on the other hand, the most favorable oxidation reaction will be
2H2O = O2 +4H+ + 4e- (Emf = -1.3 V) that will occur at the anode. Thus, the product at the anode is oxygen gas and at the cathode electrode is silver metal.
33.11 trillion kilometers is equivalent to 3.5 light years
hope this helps :)<span />