Answer:
The concentration and pKa of an acid and its conjugate base can limit the buffering capacity of a molecule.
Explanation:
A buffer is an acid and its conjugate base and the quality of it depends on its buffer capacity. This buffer capacity is the resistance to change the pH of the solution when strong acids or bases are added. The buffer capacity is related to the buffer concentration, the concentration of the acid end its conjugate base. Also, every acid has a pKa and the buffer capacity is at its maximum at the pKa value and can buffer the solution between ± 1 the pKa value.
Answer:
52.99 kPa
Explanation:
Initial volume V1 = 2.7 L
Initial Pressure P1 = 78.5 kPa
Final Volume V2 = 4.0L
Final Pressure P2 = ?
Temperature is constant
The relationship between these quantities is given by the mathematical expression of Boyles law. This is given as;
V1P1 = V2P2
P2 = V1P1 / V2
P2 = 2.7 * 78.5 / 4.0
P2 = 52.99 kPa
Answer:
The answer to your question is 8.74 g of He
Explanation:
Data
V = 2.4 x 10² L
P = 99 kPa
T = 0°C
mass = ?
Process
1.- Convert kPa to atm
P = 99 kPa = 99000 Pa
1 atm --------------- 101325 Pa
x --------------- 99000 Pa
x = (99000 x 1) / 101325
x = 0.977 atm
2.- Convert temperature to °K
°K = 273 + 0
°K = 273
3.- Substitution
PV = nRT
- Solve for n
n = PV / RT
n = (0.977)(2.4 x 10²) / (0.082)(273)
n = 24.48 / 22.386
n = 1.093 moles
4.- Calculate the grams of He
8 g -------------------- 1 mol
x -------------------- 1.093 moles
x = (1.093 x 8) / 1
x = 8.74 g
Answer:
atoms or molecules
Explanation:
Gas particles are constantly bumping into each other and the borders of their container.