Answer:
Equation of the tangent to the curve
y = 240x - 215994
Equation of the normal
y = (-1/240)x + 9.75 = - 0.00417x + 9.75
Step-by-step explanation:
y = (6 + 4x)² = 36 + 48x + 16x² = 16x² + 48x + 36
dy/dx = 32x + 48
At the point (6,900),
dy/dx = 32(6) + 48 = 240
Equation of the tangent at point (a,b) is
(y - b) = m(x - a)
a = 6, b = 900, m = 240
y - 6 = 240(x - 900)
In the y = mx + b form,
y - 6 = 240x - 216000
y = 240x - 215994
The slope of the normal line = -(1/slope of the tangent line) (since they're both perpenducular to each other)
Slope of the normal line = -1/240
Equation of normal
y - 6 = (-1/240)(x - 900)
y - 6 = (-x/240) + 3.75
y = (-1/240)x + 9.75
y = - 0.00417x + 9.75
Answer:
-0.6309
Step-by-step explanation:
Using the change of base formula,
Log 1/2 to base 3 = Log1/2 ÷ Log 3 = Log 0.5 ÷ Log 3
Log 0.5 = -0.3010
Log3 = 0.4771
Log 0.5 ÷ Log 3 = -0.3010 ÷ 0.4771 = -0.6309
Answer:
10 and 15
Step-by-step explanation:
Let 'x' and 'y' are the numbers we need to find.
x + y = 25 (two numbers whose sum is 25)
(1/x) + (1/y) = 1/6 (the sum of whose reciprocals is 1/6)
The solutions of the this system of equations are the numbers we need to find.
x = 25 - y
1/(25 - y) + 1/y = 1/6 multiply both sides by 6(25-y)y
6y + 6(25-y) = (25-y)y
6y + 150 - 6y = 25y - (y^2)
y^2 - 25y + 150 = 0 quadratic equation has 2 solutions
y1 = 15
y2 = 10
Thus we have
:
First solution: for y = 15, x = 25 - 15 = 10
Second solution: for y = 10, x = 25 - 10 = 15
The first and the second solution are in fact the same one solution we are looking for: the two numbers are 10 and 15 (since the combination 10 and 15 is the same as 15 and 10).
Answer: x = 5/2
Step-by-step explanation:
Answer:
I think it's 4 times 3 is the more number for 12.