Answer:
Velocity of electron will be 
Explanation:
We have given distance across the plate d = 2 mm 
Potential difference V = 6 volt
We know that potential difference at any distance is given by
V = Ed , here V is potential difference, E is electric field and d is distance
So 
Charge on electron 
We know that expression of velocity is given by
, here q is charge on electron, E is electric field and d is distance
So 
Answer:
(A) The maximum height of the ball is 40.57 m
(B) Time spent by the ball on air is 5.76 s
(C) at 33.23 m the speed will be 12 m/s
Explanation:
Given;
initial velocity of the ball, u = 28.2 m/s
(A) The maximum height
At maximum height, the final velocity, v = 0
v² = u² -2gh
u² = 2gh

(B) Time spent by the ball on air
Time of flight = Time to reach maximum height + time to hit ground.
Time to reach maximum height = time to hit ground.
Time to reach maximum height is given by;
v = u - gt
u = gt

Time of flight, T = 2t

(C) the position of the ball at 12 m/s
As the ball moves upwards, the speed drops, then the height of the ball when the speed drops to 12m/s will be calculated by applying the equation below.
v² = u² - 2gh
12² = 28.2² - 2(9.8)h
12² - 28.2² = - 2(9.8)h
-651.24 = -19.6h
h = 651.24 / 19.6
h = 33.23 m
Thus, at 33.23 m the speed will be 12 m/s
<h2>
C. 20 T</h2>
The strength of the magnetic field is equal to 20 Tesla.
<h3>
Explanation:</h3>
Given:
Induced potential difference = V = 12 V
Length of wire = L = 0.20 m
Speed of the moving wire = V = 3.0 m/s
Magnetic field strength = B = ?
A conductor, placed in a uniform magnetic field; when moved at a constant speed with respect to the field, leads to a changing magnetic flux, generating an electromotive force (EMF). Using, Faraday's law of magnetic induction, a moving conductor's induced EMF in terms of the magnetic field strength is given by :
......................(1)
where
E = Induced potential difference (EMF)
L = Length of the conductor
V = Speed of the conductor moved with respect to the magnetic field
B = Strength of uniform magnetic field
Rewriting equation (1) for B, we get

The strength of magnetic field is equal to 20 Tesla.
Answer:
the statement is TRUE
Explanation:
When we move in the same direction, the relative speed of the two vehicles is lower, so we must subtract their speeds, if the result is positive the vehicles approach and if it is negative they move away.
v_relative = v₁ - v₂
When the two vehicles go in opposite directions, the speed is much higher, so we must add their speeds
v_relative = v₁ - (-v₂))
v_relative = v₁ + v₂
therefore the statement is TRUE