Based on the calculations, the speed required for this satellite to stay in orbit is equal to 1.8 × 10³ m/s.
<u>Given the following data:</u>
- Gravitational constant = 6.67 × 10⁻¹¹ m/kg²
- Mass of Moon = 7.36 × 10²² kg
- Distance, r = 4.2 × 10⁶ m.
<h3>How to determine the speed of this satellite?</h3>
In order to determine the speed of this satellite to stay in orbit, the centripetal force acting on it must be sufficient to change its direction.
This ultimately implies that, the centripetal force must be equal to the gravitational force as shown below:
Fc = Fg
mv²/r = GmM/r²
<u>Where:</u>
- m is the mass of the satellite.
Making v the subject of formula, we have;
v = √(GM/r)
Substituting the given parameters into the formula, we have;
v = √(6.67 × 10⁻¹¹ × 7.36 × 10²²/4.2 × 10⁶)
v = √(1,168,838.095)
v = 1,081.13 m/s.
Speed, v = 1.8 × 10³ m/s.
Read more on speed here: brainly.com/question/20162935
#SPJ1
Answer:
Explanation:
Brownian motion is a random (irregular) motion of particles e.g smoke particle. The set up in the diagram can be used to observe the motion of smoke.
1. The apparatus used are:
A is a source of light
B is a converging lens
C is a glass smoke cell
D is a microscope
2. The uses of the apparatus are:
A - produces the light required to so as to see clearly the movement of the particles.
B - converges the rays of light from the source to the smoke cell.
C - is made of glass and used for encamping the smoke particles so as not to mix with air.
D - is used for the clear view or observation or study of the motion of the smoke particles in the cell.
Answer:
At point A, the cart has high potential energy. At point b, the cart is pulled down by gravity. At point c, the cart gains its highest kinetic energy. At point d, the cart returns back to the same state but with lower potential energy.
If the pulling is done parallel to the floor with constant velocity, then the box is in equilibrium. In particular, the weight and normal force cancel, so that
<em>n</em> = 38 N
The friction force is proportional to the normal force by a factor of 0.27, so that
<em>f</em> = 0.27 (38 N) ≈ 10.3 N
and so the answer is D.