The answer iiiis... A: Group 8A, Period 1
<h3>
Here's why:</h3>
The way I found this doesn't have much thought or explanation--I just remember that helium and hydrogen are in period 1. The only answer choice with "period 1" is A.
Explanation:
when the catalyst is added the reaction with the lower activation energy occur
<h3>
Answer:</h3>
70.906 g
<h3>
Explanation:</h3>
We are given;
- Atoms of Chlorine = 1.2 × 10^24 atoms
We are required to calculate the mass of Chlorine
- We know that 1 mole of an element contains atoms equivalent to the Avogadro's number, 6.022 × 10^23.
- That is , 1 mole of an element = 6.022 × 10^23 atoms
- Therefore; 1 mole of Chlorine = 6.022 × 10^23 atoms
But since Chlorine gas is a molecule;
- 1 mole of Chlorine gas = 2 × 6.022 × 10^23 atoms
But, molar mass of Chlorine gas = 70.906 g/mol
Then;
70.906 g Of chlorine gas = 2 × 6.022 × 10^23 atoms
= 1.20 × 10^24 atoms
Thus;
For 1.2 × 10^24 atoms ;
= ( 70.906 g/mol × 1.2 × 10^24 atoms ) ÷ (1.20 × 10^24 atoms)
<h3>= 70.906 g </h3>
Therefore, 1.20 × 10^24 atoms of chlorine contains a mass of 70.906 g
=
Imagine a chemist is in the lab and trying to make some chemical reactions happen. In one reaction she reacts chemicals in an exothermic reaction and there is an increase in entropy. A second chemical reaction she is trying to run is endothermic and there is a decrease in entropy. Which of the two reactions is more likely to occur and why?
The answer is A. Isotopes only differ in the number of neutrons in the nucleus of their atoms. Otherwise, all other subatomic particles are the same. The isotope with the more neutrons in its nucleus is therefore, heavier (have higher mass number). They share the same chemical properties but have slight physical differences such as boiling points with the heavier element having a slightly higher boiling point that the lighter element.