Answer:
frequency = 8.22 x 10¹⁴ s⁻¹
Explanation:
An electron's positional potential energy while in a given principle quantum energy level is given by Eₙ = - A/n² and A = constant = 2.18 x 10⁻¹⁸j. So to remove an electron from the valence level of Boron (₅B), energy need be added to promote the electron from n = 2 to n = ∞. That is, ΔE(ionization) = E(n=∞) - E(n=2) = (-A/(∞)²) - (-A/(2)²) = [2.18 x 10⁻¹⁸j/4] joules = 5.45 x 10⁻¹⁹ joules.
The frequency (f) of the wave ionization energy can then be determined from the expression ΔE(izn) = h·f; h = Planck's Constant = 6.63 x 10⁻³⁴j·s. That is:
ΔE(izn) = h·f => f = ΔE(izn)/h = 5.45 x 10⁻¹⁹ j/6.63 x 10⁻³⁴ j·s = 8.22 x 10¹⁴ s⁻¹
Answer:
False
Explanation:
In chemistry, trigonal planar is a molecular geometry model with one atom at the center and three atoms at the corners of an equilateral triangle, called peripheral atoms, all in one plane. In an ideal trigonal planar species, all three ligands are identical and all bond angles are 120°.
Meaning there shouldn't be any lone pair.
Look up "Structure of a trigonal planar molecule" for a visual
So it is false.
Molar mass of C: 12.011 g/mol
The equation says C20, which means there are 20 carbon atoms in each molecule of Vitamin A. So, we multiply 12.011 by 20 to get 240.22 g/mol carbon.
Molar mass of H: 1.0079 g/mol
The equation says C30, which means there are 30 hydrogen atoms in each molecule of Vitamin A. So, we multiply 1.0079 by 30 to get 30.237 g/mol hydrogen.
Molar mass of O: 15.999 g/mol
The equation says O without a number, which means there is only one oxygen atom in each molecule of Vitamin A. So, we leave O at 15.999 g/mol.
Then, just add it up:
240.22 g/mol C + 30.237 g/mol H + 15.999 g/mol O = 286.456 g/mol C20H30O
So, the molar mass of Vitamin A, C20H30O, is approximately 286.5 g/mol.
the answer would be winter because the north would be facing away from the son therefor making the northern states cold.
Percentage by volume of solution is the percentage volume of solute in total volume of solution.
Volume percentage (v/v%) = volume of solute / total volume of solution x 100%
volume of solute - 16.0 mL
total volume of solution - 155 mL
v/v% = 16.0 / 155 x 100% = 10.32%
this means that in a volume of 100 mL solution, 10.32 mL is acetone.