Lets take 100 g of this compound,
so it is going to be 2.00 g H, 32.7 g S and 65.3 g O.
2.00 g H *1 mol H/1.01 g H ≈ 1.98 mol H
32.7 g S *1 mol S/ 32.1 g S ≈ 1.02 mol S
65.3 g O * 1 mol O/16.0 g O ≈ 4.08 mol O
1.98 mol H : 1.02 mol S : 4.08 mol O = 2 mol H : 1 mol S : 4 mol O
Empirical formula
H2SO4
Answer:
The reaction will be spontaneous
Explanation:
To determine if the reaction will be spontaneous or not at this temperature, we need to calculate the Gibbs's energy using the following formula:
<u>If the Gibbs's energy is negative, the reaction will be spontaneous, but if it's positive it will not.</u>
Calculating the
:
Now, other factor we need to determine is the sign of the S variation. When talking about gases, the more moles you have in your system the more enthropic it is.
In this reaction you go from 7 moles to 8 moles of gas, so you can say that you are going from one enthropy to another higher than the first one. This results in:
If the variation of S is positive, the Gibbs's energy will be negative always and the reaction will be spontaneous.
Answer:
A. (CH3)3C-I reacts by SN1 mechanism whose rate is independent of nucleophile reactivity.
Explanation:
We must recall that (CH3)3C-I is a tertiary alkyl halide. Tertiary alkyl halides preferentially undergo substitution reaction via SN1 mechanism.
In SN1 mechanism, the rate of reaction depends solely on the concentration of the alkyl halide (unimolecular mechanism) and is independent of the concentration of the nucleophile. As a result of this, both Br^- and Cl^- react at the same rate.
Answer: a biome is defined by its biogeography, temperature, and precipitation
Explanation:
Explanation:
Used to separate one reactant or product from another
If it's helpful ❤❤
THANK YOU