Answer:
A = 1,13x10¹⁰
Ea = 16,7 kJ/mol
Explanation:
Using Arrhenius law:
ln k = -Ea/R × 1/T + ln(A)
You can graph ln rate constant in x vs 1/T in y to obtain slope: -Ea/R and intercept is ln(A).
Using the values you will obtain:
y = -2006,9 x +23,147
As R = 8,314472x10⁻³ kJ/molK:
-Ea/8,314472x10⁻³ kJ/molK = -2006,9 K⁻¹
<em>Ea = 16,7 kJ/mol</em>
Pre-exponential factor is:
ln A = 23,147
A = e^23,147
<em>A = 1,13x10¹⁰</em>
<em></em>
I hope it helps!
The most appropriate answer is C !! Cs is most electropositive and thus least electronegative !!
Answer:

Explanation:
Hello.
In this case, since the undergoing chemical reaction is only between the sodium bicarbonate and the acid HA:

For 0.561 g of yielded carbon dioxide (molar mass 44 g/mol), the following mass of sodium bicarbonate (molar mass 84 g/mol) that reacted was:

Considering the 1:1 mole ratio between CO2 and NaHCO3. Finally, the percent by mass of NaHCO3 is computed by dividing the mass of reacted NaHCO3 and t the mixture:

Best regards.
With all of the information given (pressure, volume, temperature, and the molar mass), we need a formula that relates this all together. The formula we need is the ideal gas law, PV=nRT. Since the pressure is defined in millimeters of mercury, we need the R value that correlates with this, which is 62.4; on top of this, we need the temperature in Kelvin - simply add 273.15 to convert from Celsius. With all of this information, simply plug-and-chug:
PV=nRT
(800)(3.7) = n(62.4)(37 + 273.15)
n = 0.1529 moles
Finally, the problem is asking the amount of air in grams. We have moles, so all we need to do is multiply that value by the molar mass.
0.1529 moles x 29 grams per mole =
4.435 grams of air
The balloon has 4.435 grams of air inside it.
Hope this helps!