To increase the energy of the emitted electrons, the frequency of the incident light on the metal must be increased.
<h3>What is energy of emitted electron?</h3>
The maximum energy of an emitted electron is equal to the energy of a photon for frequency f (E = hf ), minus the energy required to eject an electron from the metal's surface, also known as work function.
Ee = E - W
<h3>Energy of the emitted electron</h3>
The energy of emitted electrons based on the research of Albert Einstein is given as;
E = hf
where;
- h is planck's constant
- f is frequency of incident light on the metal
Thus, to increase the energy of the emitted electrons, the frequency of the incident light on the metal must be increased.
Learn more about energy of electron here: brainly.com/question/11316046
#SPJ1
Protons goes in the blank. the word can be used for both.
Rust (Fe2O3. 4H2O) is formed when iron interacts slowly with oxygen and water. Mass of Fe in grams is 2.18 x 10⁴ g.
<h3>
What is the explanation?</h3>
There are 2 moles of Fe atoms in 1 mole of Fe2O3-4H2O. The number of moles of Fe atoms in 45.2 kg rust is shown below.
Moles of Fe = 195.01 mol Fe₂O₃.4H₂O (
)
Moles of Fe = 390.02 mol Fe
Multiply the calculated number of moles of iron, Fe, by its molar mass which is 55.85 
Mass of Fe = 390.02 mol Fe (
)
Mass of Fe = 2.18 x 10⁴ g Fe
Avogadro's number (6.022 x 1023) of molecules (or formula units) make up one mole of a substance (ionic compound). The mass of 1 mole of a chemical is indicated by its molar mass. It provides you with the amount of grams per mole of a substance, to put it another way.
To learn more about moles visit:
brainly.com/question/26416088
#SPJ4
Answer: CaSO3
Explanation:Please see attachment for explanation