1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lorico [155]
2 years ago
13

Are all liquids able to conduct an electric current

Physics
1 answer:
Alona [7]2 years ago
6 0

The ions are able to carry electric current through a solution. Some liquids such as oil or alcohol do not form ions and do not conduct electricity. Vinegar is mostly water with a small amount of acetic acid in it. The acetic acid separates into ions on so that the solution conducts electricity.     BRAINLIST ME PEASE

You might be interested in
The density, or intensity, of a magnetic field is called flux.<br> True<br> False
aev [14]

Answer:

True :)

Explanation:

4 0
3 years ago
the equation of motion is given for a particle when s is in meters and t is in seconds. Find the acceleration after 4.5 seconds
ki77a [65]

Answer:

Explanation:

The question is incomplete.

The equation of motion is given for a particle, where s is in meters and t is in seconds. Find the acceleration after 4.5 seconds.

s= sin2(pi)t

Acceleration = d²S/dt²

dS/dt = 2πcos2πt

d²S/dt² = -4π²sin2πt

A(t) = -4π²sin2πt

Next is to find acceleration after 4.5 seconds

A(4.5) = -4π²sin2π(4.5)

A(4.5) = -4π²sin9π

A(4.5) = -4π²sin1620

A(4.5) = -4π²(0)

A(4.5) = 0m/s²

4 0
2 years ago
A coat rack weighs 65.0 lbs when it is filled with winter coats and 40.0 lbs when it is empty. The base of the coat rack has an
Whitepunk [10]

Answer:

0.056 psi more pressure is exerted by filled coat rack than an empty coat rack.

Explanation:

First we find the pressure exerted by the rack without coat. So, for that purpose, we use formula:

P₁ = F/A

where,

P₁ = Pressure exerted by empty rack = ?

F = Force exerted by empty rack = Weight of Empty Rack = 40 lb

A = Base Area = 452.4 in²

Therefore,

P₁ = 40 lb/452.4 in²

P₁ = 0.088 psi

Now, we calculate the pressure exerted by the rack along with the coat.

P₂ = F/A

where,

P₂ = Pressure exerted by rack filled with coats= ?

F = Force exerted by filled rack = Weight of Filled Rack = 65 lb

A = Base Area = 452.4 in²

Therefore,

P₂ = 65 lb/452.4 in²

P₂ = 0.144 psi

Now, the difference between both pressures is:

ΔP = P₂ - P₁

ΔP = 0.144 psi - 0.088 psi

<u>ΔP = 0.056 psi</u>

8 0
3 years ago
Continuous sinusoidal perturbation Assume that the string is at rest and perfectly horizontal again, and we will restart the clo
Elena-2011 [213]

a) 3.14 \cdot 10^{-4} s

b) See plot attached

c) 10.0 m

d) 0.500 cm

Explanation:

a)

The position of the tip of the lever at time t is described by the equation:

y(t)=(0.500 cm) sin[(2.00\cdot 10^4 s^{-1})t] (1)

The generic equation that describes a wave is

y(t)=A sin (\frac{2\pi}{T} t) (2)

where

A is the amplitude of the wave

T is the period of the wave

t is the time

By comparing (1) and (2), we see that for the wave in this problem we have

\frac{2\pi}{T}=2.00\cdot 10^4 s^{-1}

Therefore, the period is

T=\frac{2\pi}{2.00\cdot 10^4}=3.14 \cdot 10^{-4} s

b)

The sketch of the profile of the wave until t = 4T is shown in attachment.

A wave is described by a sinusoidal function: in this problem, the wave is described by a sine, therefore at t = 0 the displacement is zero, y = 0.

The wave than periodically repeats itself every period. In this sketch, we draw the wave over 4 periods, so until t = 4T.

The maximum displacement of the wave is given by the value of y when sin(...)=1, and from eq(1), we see that this is equal to

y = 0.500 cm

So, this is the maximum displacement represented in the sketch.

c)

When standing waves are produced in a string, the ends of the string act as they are nodes (points with zero displacement): therefore, the wavelength of a wave in a string is equal to twice the length of the string itself:

\lambda=2L

where

\lambda is the wavelength of the wave

L is the length of the string

In this problem,

L = 5.00 m is the length of the string

Therefore, the wavelength is

\lambda =2(5.00)=10.0 m

d)

The amplitude of a wave is the magnitude of the maximum displacement of the wave, measured relative to the equilibrium position.

In this problem, we can easily infer the amplitude of this wave by looking at eq.(1).

y(t)=(0.500 cm) sin[(2.00\cdot 10^4 s^{-1})t]

And by comparing it with the general equation of a wave:

y(t)=A sin (\frac{2\pi}{T} t)

In fact, the maximum displacement occurs when the sine part is equal to 1, so when

sin(\frac{2\pi}{T}t)=1

which means that

y(t)=A

And therefore in this case,

y=0.500 cm

So, this is the displacement.

6 0
3 years ago
How much energy is required to heat 70 g of water at 20°C to boiling
choli [55]

Answer:

Q=23,430J

Explanation:

Hello,

In this case, since we compute the required energy via:

Q=mC\Delta T

Whereas m is the mass which here is 70 g, C the specific heat which for water is 4.184 J/(g°C) and ΔT is the temperature difference which is:

\Delta T=100-20=80\°C

Therefore, the energy turns out:

Q=70g*4.184\frac{J}{g\°C}*80\°C\\ \\Q=23,430J

Best regards.

3 0
3 years ago
Other questions:
  • A projectile is launched in the horizontal direction. It travels 2.050 m horizontally while it falls 0.450 m vertically, and it
    9·1 answer
  • The particles ejected from the sun during a coronal mass ejection is called
    12·1 answer
  • If it uses 5 watts, how much time would it take to do 100J of work?
    12·1 answer
  • you are piloting a small plane and you want to reach an airport 450 km due south in 3.0 h a wind is blowing from the west 50.0 k
    7·1 answer
  • How do I find the atomic mass of an element?
    9·2 answers
  • The electric motor has an input energy of 50,000 joules each second. The motor transfers 35,000 joules of useful energy each sec
    14·1 answer
  • Calculate the electric field intensity at a point 3 cm away from point charge of 3 x 10^-9 C.
    8·1 answer
  • When a certain amount of heat is supplied to 1KG of insulated aluminium. The temperature of the aluminium rises by 1°C
    7·2 answers
  • A car has negative acceleration. What information can you infer from this? (4 points) a The car is speeding up and changing its
    15·1 answer
  • At what time after being ejected is the boulder moving at a speed 20.7 m/s upward?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!