Elastic Potential Energy because the elasticity in the string stores up the energy.
To solve this problem we could apply the concepts given by the conservation of Energy.
During the launch given in terms of kinetic energy and reaching the maximum point of the object, the potential energy of the body is conserved. However, part of all this energy is lost due to the work done by the friction force due to friction with the air, therefore

The potential and kinetic energy are conserved and are the same PE = KE and this value is equivalent to 100J, therefore

The kinetic energy will ultimately be less than 100J, so the correct answer is C.
Answer:
For the distance range 50 to 500 km, the S-waves travel about 3.45 km/s and the P-waves around 8 km/s.
hope it helps.
Answer:
The charge flows through a point in the circuit during the change is 0.044 C.
Explanation:
Given that,
Number of turns in the copper wire, N = 200
Area of cross section, 
Resistance of the circuit, R = 118 ohms
If an externally applied uniform longitudinal magnetic filed in the core changes from 1.65 T in one direction to 1.65 T in the opposite direction.
We need to find the charge flows through a point in the circuit during the change. Due to change in magnetic field an emf is induced in it. It is given by :

Using Ohm's law :


Electric current is equal to the rate of change of electric charge. So,

So, the charge flows through a point in the circuit during the change is 0.044 C.
The answer is 1.99 × 10⁻¹⁰ m.
To calculate this we will use De Broglie wavelength formula:
<span>λ = h/(m*v)
</span><span>λ - the wavelength
</span>h - Plank's constant: h = 6.626 × 10⁻³⁴ Js
v - speed
m - mass
It is given:
<span>λ = ?
</span>m = 9.11 × 10⁻²⁸<span> g
v = </span>3.66 × 10⁶<span> m/s
After replacing in the formula:
</span>λ = h/(m*v) = 6.626 × 10⁻³⁴ /(9.11 × 10⁻²⁸ * 3.66 × 10⁶) = 1.99 × 10⁻¹⁰ m