High iron and magnesium rocks have a high percentage of dark-colored (mafic) minerals.
So the high iron and magnesium would be darker than the low iron and magnesium.
Answer: condenstation.
Justification:
The polymerization by condensation is a well know chemical reaction in which two monomers ("small" molecules), each with (at least) two functional groups, combine and relase water as by-product. Actually, even if the by-product released is not water, yet the reaction is called condenstation, since the mechanism is basically the same.
An example of such reaction is the manufacturing of nylon 6,6, which is produced from adipic acid and 1,6-diamine hexane:
HOOC - [CH₂]₄ - COOH + nH₂N - [CH₂]₆ - NH₂ → - nylon - + nH₂O
I omitted the formula of nylon because it is large, and that is not the core of the question but the fact the kind of reaction: two molecules combine to form is a larger molecule, and water is released
The pairs are:
K, Kr - Same period
Be, Mg - Same group
Ni, Tc - Both are transition metals
B, Ge - Both are metaloids
Al, Pb - Both form inert oxides
Answer:There is no relationship between the viscosity and density of a fluid. While viscosity is the thickness or thinness of a fluid, density refers to the space between its particles. However, both properties are affected by temperature. When a fluid is heated, its particles move far apart, and it also becomes less viscous.
Answer:
The lock-and-key model:
c. Enzyme active site has a rigid structure complementary
The induced-fit model:
a. Enzyme conformation changes when it binds the substrate so the active site fits the substrate.
Common to both The lock-and-key model and The induced-fit model:
b. Substrate binds to the enzyme at the active site, forming an enzyme-substrate complex.
d. Substrate binds to the enzyme through non-covalent interactions
Explanation:
Generally, the catalytic power of enzymes are due to transient covalent bonds formed between an enzyme's catalytic functional group and a substrate as well as non-covalent interactions between substrate and enzyme which lowers the activation energy of the reaction. This applies to both the lock-and-key model as well as induced-fit mode of enzyme catalysis.
The lock and key model of enzyme catalysis and specificity proposes that enzymes are structurally complementary to their substrates such that they fit like a lock and key. This complementary nature of the enzyme and its substrates ensures that only a substrate that is complementary to the enzyme's active site can bind to it for catalysis to proceed. this is known as the specificity of an enzyme to a particular substrate.
The induced-fit mode proposes that binding of substrate to the active site of an enzyme induces conformational changes in the enzyme which better positions various functional groups on the enzyme into the proper position to catalyse the reaction.