No, momentum is conserved so:
momentum before=momentum after
it is C. 100 kg m/s
Answer:
Work done= Energy transferred
Explanation:
Work is the transfer of energy. In physics we say that work is done on an object when you transfer energy to that object. If you put energy into an object, then you do work on that object (mass).
Ionic compounds typically have high melting and boiling points, and are hard and brittle. when melted or dissolved they become highly conductive, because the ions are mobilized.
The change in the player's internal energy is -491.6 kJ. The number of nutritional calories is -117.44 kCal
For this process to take place, some of the basketball player's perspiration must escape from the skin. This is because sweating relies on a physical phenomenon known as the heat of vaporization.
The heat of vaporization refers to the amount of heat required to convert 1g of a liquid into a vapor without causing the liquid's temperature to increase.
From the given information,
- the work done on the basketball is dW = 2.43 × 10⁵ J
The amount of heat loss is represented by dQ.
where;
∴
Using the first law of thermodynamics:b
dU = dQ - dW
dU = -mL - dW
dU = -(0.110 kg × 2.26 × 10⁶ J/kg - 2.43 × 10⁵ J)
dU = -491.6 × 10³ J
dU = -491.6 kJ
The number of nutritional calories the player has converted to work and heat can be determined by using the relation:

dU = -117.44 kcal
Learn more about first law of thermodynamics here:
brainly.com/question/3808473?referrer=searchResults
Who Figured This Out? The American astronomer Edwin Hubble made the observations in 1925 and was the first to prove that the universe is expanding. He proved that there is a direct relationship between the speeds of distant galaxies and their distances from Earth. This is now known as Hubble's Law.