Answer:
c. More intense IR absorption occur for those bonds having greater dipole moment changes with bond lengthening in a vibration.
Explanation:
When the molecules is exposed to the infrared radiation, the sample molecules absorb the radiation of wavelengths (specific to molecule) which causes change in the dipole moment of the sample molecules. The vibrational energy levels of the sample molecules consequently transfer from the ground state to the excited state.
Frequency of absorption peak is determined by vibrational energy gap.
Intensity of absorption peaks is related to change of dipole moment and possibility of transition of the energy levels.
Thus, by analyzing infrared spectrum,abundant structure information of the molecule can be known.
Hence, the correct answer to the question is
c. More intense IR absorption occur for those bonds having greater dipole moment changes with bond lengthening in a vibration.
Answer:
163 N
Explanation:
The density of copper is about 8.96. The ratio of the weight in water to the weight in air is about 1-1/ρ, so is about 0.8884.
0.8884 × 184 N ≈ 163 N
The submerged weight is about 163 N.
Answer:
The gravitational pull is determined by the mass and distance.
Explanation:
According to Newton's law of universal gravitation

where F is the gravitational pull, G is gravitational constant, m₁ and m₂ are masses of bodies and r is the distance between them.
It can be seen from the above equation that F is directly proportional to the product of the masses and inversely proportional to the square of distance between them.
F ∝ m₁m₂
F ∝ 1/r²
Answer:
B. Shear Modulus
Explanation:
In this scenario, the friction force between the sliding block and the floor causes the block to deform.
Hence, the elastic modulus which describes the relationship between stress and strain for a block of iron sliding across a horizontal floor is Shear Modulus.
Shear Modulus can be defined as the ratio of shear stress to shear strain with respect to a physical object.
This ultimately implies that, Shear Modulus arises as a result of the application of a shear force on an object or body which eventually leads to its deformation. Thus, this phenomenon is simply used by scientists to measure or determine the rigidity of an object or body.
Mathematically, Shear Modulus is given by the formula;

Where;
G is the Shear Modulus.
F is the force applied to the object.
A is the area of the object.
l is the length of the object.
Dx is the change in length.
Shear Modulus is measured in Pascals.