Answer:
Explanation:
Given
radius 
Charge on surface 
Point Charge inside sphere 
Electric Field at 
Treating Surface charge as Point charge and applying Gauss law

where A=surface area up to distance r



Answer:
The magnitud of the torque doing by the foot at the point where the shaft is attached is 0.063 Nm
Explanation:
The torque is obtained by multiplying the longitude from the shaft attached point to force acting point by the force perpendicular component:
T = d * Fp
Notice that the perpindicular component is the total force magnitud times the sino of the angle respect the horizontal:
Fp = F*sin(a)
Replacing the values for the force and the angle:
Fp = 33N*sin(π/5) = 33N * 0.011 = 0.363 N
Taking the distance in meters:
T = 0.2m * 0.363 N = 0.063 Nm
Answer:
correct option is B. 1.39
Explanation:
given data
angle of incidence (θ) = 54.2 degrees
to find out
index of refraction of the glass
solution
we know that here reflected beam is completely polarized
so angle of incidence = angle of polarized ....................1
for reflective index we apply here Brewster law that is
μ = tan(θ) ...............2
put here θ value we get
μ = tan(54.2)
μ = 1.386
so correct option is B. 1.39
Answer:
Mass Kinetic Energy and Jules
Explanation:
The train in question is big and heavy and a car is decently heavy but say a train moving at 55 mph can plow through a car and a car driving at 55mph driving at a train will be stopped dead in its tracks. This is because newtons laws of motion specifically an object in motion will stay in motion unless its opposed. The train also has a payload behind it meaning it hurts with force while a car doesn't have to much mass behind it. The train takes loner to stop for as it's acceleration as well as it's deceleration are very slow because its huge and takes a lot of force to stop it while a car is very centralized and compact when it comes to weight and its brakes are usually effective at stopping at 55 mph in about 2 to 6 seconds while a train might stay moving for a good 35 seconds. The force behind the train is immense for as even if the wheels don't spin at all the train will still move since the force behind it is great and a cars tires have a lot of grip and not a lot mass which plays into the force the car has so it can stop simply.
Answer:
94.67 N
Explanation:
Consider a free body diagram with force, F of 41 N applied at an angle of 37 degrees while the weight acts downwards. Resolving the force into vertical and horizontal components, we obtain a free body diagram attached.
At equilibrium, normal reaction is equal to the sum of the weight and the vertical component of the force applied. Applying the condition of equilibrium along the vertical direction.

Substituting 70 N for W, 41 N for F and
for 37 degrees
N=70+41sin37=94.67441595 N and rounding off to 2 decimal places
N=94.67 N