Answer:
Zero work done,since the body isn't acting against or by gravity.
Explanation:
Gravitational force is usually considered as work done against gravity (-ve) and work by gravity ( +ve ) and also When work isn't done by or against gravity work done in this case is zero.
Gravitational force can be define as that force that attracts a body to any other phyical body or system that have mass.
The planet been considered as our system in this case is assumed to have mass, and ought to demonstrate such properties associated with gravitational force in such system. Such properties include the return of every object been thrown up as a result of gravity acting downwards. The orbiting nature of object along an elliptical part when gravitational force isn't acting on the body and it is assumed to be zero.
Answer:
Therefore the ratio of diameter of the copper to that of the tungsten is
Explanation:
Resistance: Resistance is defined to the ratio of voltage to the electricity.
The resistance of a wire is
- directly proportional to its length i.e
- inversely proportional to its cross section area i.e
Therefore
ρ is the resistivity.
The unit of resistance is ohm (Ω).
The resistivity of copper(ρ₁) is 1.68×10⁻⁸ ohm-m
The resistivity of tungsten(ρ₂) is 5.6×10⁻⁸ ohm-m
For copper:
......(1)
Again for tungsten:
........(2)
Given that and
Dividing the equation (1) and (2)
[since and ]
Therefore the ratio of diameter of the copper to that of the tungsten is
A) Work energy relation;
Work =ΔKE ; work done = Force × distance, while, Kinetic energy = 1/2 MV²
F.s = 1/2mv²
F× 4×10^-2 = 1/2 × 5 ×10^-3 × (600)²
F = 900/0.04
= 22500 N
Therefore, force is 22500 N
b) From newton's second law of motion;
F = Ma
Thus; a = F/m
= 22500/(5×10^-3)
= 4,500,000 m/s²
But v = u-at
0 = 600- 4500,000 t
t = 1.33 × 10^-4 seconds