The frequency of a wave represents B. the number of wave cycles that pass through a specific point within a given time.
The distance between two consecutive crests and the length of a wave are the <em>wavelength</em>.
The distance between the highest and lowest points of a wave is <em>twice the amplitude</em>.
Answer:
4.14 x 10²⁴ molecules CO₂
Explanation:
2 C₄H₁₀ + 13 O₂ --> 8 CO₂ + 10 H₂O
To find the number of CO₂ molecules, you need to start with 100 grams of butane (C₄H₁₀), convert to moles (using the molar mass), convert to moles of CO₂ (using coefficients from equation), then convert to molecules (using Avagadro's number). The molar mass of C₄H₁₀ is calculated using the quantity of each element (subscript) multiplied by the number on the periodic table. The ratios should be arranged in a way that allows for units to be cancelled.
4(12.011g/mol) + 10(1.008 g/mol) = 58.124 g/mol C₄H₁₀
100 grams C₄H₁₀ 1 mol C₄H₁₀ 8 mol CO₂
-------------------------- x ---------------------- x ---------------------
58.124 g 2 mol C₄H₁₀
6.022 x 10²³ molecules
x ------------------------------------ = 4.14 x 10²⁴ molecules CO₂
1 mol CO₂
The answer would be 6 e-. This is becuase you are turning a charge of -4 into a +2. In order to do this, you transfer 4 electrons for a neutral charge, and an additional 2 for a charge of +2.
This makes a total charge of +2, and the total transferred electrons 6 e-
Answer:
A. Both describe ways a solid can change.
Since K3 is greater than 1, the reaction is thermodynamically favorable.
Data;
- FeF2 is in an acidic solution
- K2 > 1 is thermodynamically favorable
- k3 > 1 is not thermodynamically favorable
- K1<1 is not thermodynamically favorable
<h3>Hess Law</h3>
This states that the heat change in a given chemical reaction is the same irrespective of the number of process in which the reaction is effected.
Using Hess Law;

substituting this using Gibbs law,

Since K3 is greater than 1, the reaction is thermodynamically favorable.
Learn more on Hess law here;
brainly.com/question/12895682