Answer:
C) It has a constant average kinetic energy
Explanation:
The average kinetic energy of the particles in a gas is directly proportional to the temperature of the gas, according to the equation.
k is the Boltzmann's constant
T is the absolute temperature of the gas
Therefore, temperature of a gas is a measure of the average kinetic energy of the particles.
In this problem, we are told that the gas is at constant temperature (and volume): therefore, according to the previous equation, this means that the average kinetic energy is also constant.
<span>a. NaNO3: soluble
b. AgBr: insoluble
c. NH4OH: soluble
d. Ag2CO3: insoluble
e. NH4Br: soluble
f. BaSO4: insoluble
g. Pb(OH)2: soluble
h. PbCO3: insoluble</span>
Answer:
b) 2H+(aq) + 2C1-(aq) + Zn(s) → H2(g) + Zn2+(aq) + 2Cl-(aq)
Explanation:
The equation is given as;
2HCl(aq) + Zn(s) + H2(g) + ZnCl2(aq)
In writing an ionic equation, only the aqueous compounds dissociates into ions. This means HCl and ZnCl2 would dissociate to form ions.
This is given as;
2H+ + 2Cl- + Zn(s) --> H2(g) + Zn2+ + 2Cl-
The correct option is;
b) 2H+(aq) + 2C1-(aq) + Zn(s) → H2(g) + Zn2+(aq) + 2Cl-(aq)
Answer: This is from a wiki i found. Approximately one third of a cell’s proteins are destined to function outside the cell’s boundaries or while embedded within cellular membranes. Ensuring these proteins reach their diverse final destinations with temporal and spatial accuracy is essential for cellular physiology. In eukaryotes, a set of interconnected organelles form the secretory pathway, which encompasses the terrain that these proteins must navigate on their journey from their site of synthesis on the ribosome to their final destinations. Traffic of proteins within the secretory pathway is directed by cargo-bearing vesicles that transport proteins from one compartment to another. Key steps in vesicle-mediated trafficking include recruitment of specific cargo proteins, which must collect locally where a vesicle forms, and release of an appropriate cargo-containing vessel from the donor organelle (Figure 1). The newly formed vesicle can passively diffuse across the cytoplasm, or can catch a ride on the cytoskeleton to travel directionally. Once the vesicle arrives at its precise destination, the membrane of the carrier merges with the destination membrane to deliver its cargo. Have a nice day.
Explanation: Plz make brainliest