<span>he specific heat capacity of liquid water is 4.186 J/gm K.</span>
I think that it might represent Velocity
Answer:
Number of moles of solute = 0.6 mole
Mass =13.8 g
Explanation:
Given data:
Number of moles of sodium = ?
Volume = 2.0 L
Molarity = 0.30 M
Mass in gram of sodium= ?
Solution:
<em>Number of moles:</em>
Molarity = number of moles of solute / volume in litter
Number of moles of solute = Molarity × volume in litter
Number of moles of solute = 0.30 M × 2.0 L
Number of moles of solute = 0.6 mole
<em>Mass in gram:</em>
Mass = Number of moles × molar mass
Mass = 0.6 mole× 23 g/mol
Mass =13.8 g
Answer:
696 h
Explanation:
Let's consider the reduction of Cr³⁺.
Cr³⁺(aq) + 3e⁻ → Cr(s)
We can establish the following relations.
- The molar mass of Cr is 52.0 g/mol.
- 1 mol of Cr is deposited when 3 moles of e⁻ circulate.
- 1 mole of e⁻ has a charge of 96468 c (Faraday's constant).
- 1 A = 1 c/s
- 1 h = 3600 s
<em>How many hours will it take to plate 13.5 kg of chromium onto the cathode if the current passed through the cell is held constant at 30.0 A?</em>
