<h2>
Hello!</h2>
The answer is:
The new temperature will be equal to 4 K.

<h2>
Why?</h2>
We are given the volume, the first temperature and the new volume after the gas is compressed. To calculate the new temperature after the gas was compressed, we need to use Charles's Law.
Charles's Law establishes a relationship between the volume and the temperature at a gas while its pressure is constant.
Now, to calculate the new temperature we need to assume that the pressure is kept constant, otherwise, the problem would not have a solution.
From Charle's Law, we have:

So, we are given the following information:

Then, isolating the new temperature and substituting the given information, we have:




Hence, the new temperature will be equal to 4 K.

Have a nice day!
Answer:
C. they both eat and grow a lot, i hope it helps
0.447 is the mole fraction of Nitrogen in this mixture.
mole fraction of nitrogen= moles of nitrogen/total moles
mole fraction of nitrogen=0.85/1.90
mole fraction of nitrogen=0.447
The product of the moles of a component and the total moles of the solution yields a mole fraction, which is a unit of concentration measurement. Because it is a ratio, mole fraction is a unitless statement. The sum of the components of the mole fraction of a solution is one. In a mixture of 1 mol benzene, 2 mol carbon tetrachloride, and 7 mol acetone, the mole fraction of the acetone is 0.7. This is computed by dividing the sum of the moles of acetone in the solution by the total number of moles of the solution's constituents:
To know more about mole fraction visit : brainly.com/question/8076655
#SPJ4
Answer: 4.46 x 10^-4M
Explanation:
The pH of a solution is the concentration of hydrogen ion concentration in the solution. Mathematically, it is expressed as pH = -log(H+), where H+ is the concentration of hydrogen ion
On the pH scale, readings are from 1 to 14.
- pH values less than 7 are regarded as acidic. So, the solution with pH 3.35 is said to be acidic, and will produce hydrogen ions.
3.35 = -log(H+)
(H+) = Antilog (-3.35)
(H+) = 0.000446M
Place (H+) in standard form
(H+) = 4.46 x 10^-4M
Thus, the concentration of hydrogen ion in the solution with pH 3.35 is 4.46 x 10^-4M
Each mole of barium sulfate releases equal moles of barium ions and sulfate ions. Let the concentration of one substance be x. Thus:
Ksp = [Ba⁺²][SO₄⁻²]
1.1 x 10⁻¹⁰ = (x)(x)
x = 1.05 x 10⁻⁵
The answer is A.