Balanced equation: shown in photo
First, we have to remember the molarity formula:

Part 1:
In this case, our solute is sodium nitrate (NaNO3), and we have the mass dissolved in water, then we have to convert grams to moles. For that, we need the molecular weight:

Then, we calculate the moles present in the solution:

Now, we have the necessary data to calculate the molarity (with the solution volume of 200 mL):

The molarity of this solution equals 0.2339 M.
Part 2:
In this case, we have the same amount (in moles and mass) of sodium nitrate, but a different volume of solution, then we only have to change it:

So, the molarity of this solution is 0.1701 M.
Answer:
4) Van der waals forces
Explanation:
Krypton (Kr) belongs to the noble gas group and has fully filled valence orbitals. In the solid phase, Kr exists as a white solid with a face centered cubic structure.
Intermolecular forces of attraction from the strongest to the weakest include:
Ionic > hydrogen bonding > dipole-dipole > london dispersion
Kr is monoatomic and non-polar. When fully filled (stable) valence orbitals of 2 Kr atoms approach each other in close proximity they experience a repulsive force which prevents the formation of strong bonds. Thus, the only force of attraction in Kr is the long range weak Van Der Waals force also known as the london dispersion force.
Yes it could, but you'd have to set up the process very carefully.
I see two major challenges right away:
1). Displacement of water would not be a wise method, since rock salt
is soluble (dissolves) in water. So as soon as you start lowering it into
your graduated cylinder full of water, its volume would immediately start
to decrease. If you lowered it slowly enough, you might even measure
a volume close to zero, and when you pulled the string back out of the
water, there might be nothing left on the end of it.
So you would have to choose some other fluid besides water ... one in
which rock salt doesn't dissolve. I don't know right now what that could
be. You'd have to shop around and find one.
2). Whatever fluid you did choose, it would also have to be less dense
than rock salt. If it's more dense, then the rock salt just floats in it, and
never goes all the way under. If that happens, then you have a tough
time measuring the total volume of the lump.
So the displacement method could perhaps be used, in principle, but
it would not be easy.