Answer:

Explanation:
For this problem, we can use Boyle's law, which states that for a gas at constant temperature, the product between pressure and volume remains constant:

which can also be rewritten as

In our case, we have:
is the initial pressure
is the initial volume
is the final pressure
Solving for V2, we find the final volume:

Answer:
We kindly invite you to read carefully the explanation and check the image attached below.
Explanation:
According to this problem, the rocket is accelerated uniformly due to thrust during 30 seconds and after that is decelerated due to gravity. The velocity as function of initial velocity, acceleration and time is:
(1)
Where:
- Initial velocity, measured in meters per second.
- Final velocity, measured in meters per second.
- Acceleration, measured in meters per square second.
- Initial time, measured in seconds.
- Final time, measured in seconds.
Now we obtain the kinematic equations for thrust and free fall stages:
Thrust (
,
,
,
)
(2)
Free fall (
,
,
,
)
(3)
Now we created the graph speed-time, which can be seen below.
Answer:
My best friend lol cuz since quarantine i didn't see her
Given what we know, despite not having the figure attached to the question, we can still confirm that the magnitude for the acceleration of the dancer will be zero.
<h3>Why is the dancer's acceleration equal to zero?</h3>
This has to do with how the question clarifies the speed of the dancer. Though it does not give us an exact value, we are told that the speed is constant. This is an indicator that the acceleration is zero because with any other value for acceleration the speed <u>cannot remain</u> constant.
Therefore, given that any value for acceleration will increase or decrease the speed of the dancer, but we are told that the dancer's speed is constant throughout the trip, we can confirm that the magnitude for the acceleration of the dancer is zero.
To learn more about acceleration visit;
brainly.com/question/12134554?referrer=searchResults
Answer:
Power Skids
Explanation:
Power Skid like the question suggested, is a skid that occurs when you suddenly press too hard on the accelerator and the drive wheels lose traction. Power Skid is one of the 4 types of Skids. The other 3 includes;
Cornering skid
Blowout skid and
Braking skid.
Power skid occurs mostly as a result of insanely high speed and or acceleration,when the accelerator is pressed on too suddenly causing the vehicle to be driven beyond its capabilities, and then to skid, ultimately.