Answer:
A-the energy of the wave decreases gradually
Explanation:
when a wave is acted upon by an external damping force the energy of the wave decreases gradually.
The energy degrades into the form of heat which is considered to be of less value and use. The reason is because it disperses and spreads more widely.
So therefore it end up as heat with a little sound but that is close to none because that too disperses into heat i.e. decreased form of energy.
Answer:
Velocity, v = 0.239 m/s
Explanation:
Given that,
The distance between two consecutive nodes of a standing wave is 20.9 cm = 0.209 m
The hand generating the pulses moves up and down through a complete cycle 2.57 times every 4.47 s.
For a standing wave, the distance between two consecutive nodes is equal to half of the wavelength.

Frequency is number of cycles per unit time.

Now we can find the velocity of the wave.
Velocity = frequency × wavelength
v = 0.574 × 0.418
v = 0.239 m/s
So, the velocity of the wave is 0.239 m/s.
Answer
Time period T = 1.50 s
time t = 40 s
r = 6.2 m
a)
Angular speed ω = 2π/T
=
= 4.189 rad/s
Angular acceleration α = 
= 
= 0.105 rad/s²
Tangential acceleration a = r α = 6.2 x 0.105 = 0.651 m/s²
b)The maximum speed.
v = 2πr/T
= 
= 25.97 m/s
So centripetal acceleration.
a = 
= 
= 108.781 m/s^2
= 11.1 g
in combination with the gravitation acceleration.


Answer:
The value of bending stress on the pinion 35.38 M pa
Explanation:
Given data
m = 2 mm
Pressure angle
= 20°
No. of teeth T = 17
Face width (b) = 20 mm
Speed N = 1650 rpm
Power = 1200 W
Diameter of the pinion gear
D = m T
D = 2 × 17
D = 34 mm
Velocity of the pinion gear



Form factor for the pinion gear is
Y = 0.303
Now

Force on gear tooth


F = 408.73 N
Now the bending stress is given by the formula


= 35.38 M pa
This is the value of bending stress on the pinion
Answer:
The path of an object in uniform motion is a straight line.