Answer:
Explanation:
a ) Let let the frictional force needed be F
Work done by frictional force = kinetic energy of car
F x 107 = 1/2 x 1400 x 35²
F = 8014 N
b )
maximum possible static friction
= μ mg
where μ is coefficient of static friction
= .5 x 1400 x 9.8
= 6860 N
c )
work done by friction for μ = .4
= .4 x 1400 x 9.8 x 107
= 587216 J
Initial Kinetic energy
= .5 x 1400 x 35 x 35
= 857500 J
Kinetic energy at the at of collision
= 857500 - 587216
= 270284 J
So , if v be the velocity at the time of collision
1/2 mv² = 270284
v = 19.65 m /s
d ) centripetal force required
= mv₀² / d which will be provided by frictional force
= (1400 x 35 x 35) / 107
= 16028 N
Maximum frictional force possible
= μmg
= .5 x 1400 x 9.8
= 6860 N
So this is not possible.
To find average speed, we divide the distance of travel (in this case, 400 metres) by the time she took, 32 seconds. Therefore: 12.5 seconds is her average speed.
Answer:
Yes, since formations aren't mentioned at all in the rules, they can be adjusted. Sometimes when making a substitution, a coach will sub in a defender for an attacker/midfielder if the team is ahead and wants to protect their lead....
Explanation:
No, because superconductivity cannot occur if there is resistance
In addition to explaining electrical resistance, equilibrium distance theory also foretells the existence of superconductivity. According to its postulates, electrical resistivity decreases with distance from the equilibrium. There is only superconductivity at zero distance, with no resistance
<h3>What is Superconductivity ?</h3>
The ability of some materials to transmit electric current with virtually little resistance is known as superconductivity.
- This ability has intriguing and maybe beneficial ramifications. Low temperatures are necessary for a material to exhibit superconductor behaviour. H. K. made the initial discovery of superconductivity in 1911.
- Aluminum, magnesium diboride, niobium, copper oxide, yttrium barium, and iron pnictides are a few well-known examples of superconductors.
Learn more about Superconductivity here:
brainly.com/question/17166152
#SPJ4