Answer:
12.7m/s
Explanation:
Given parameters:
Mass of the diver = 77kg
Height = 8.18m
Unknown:
Final velocity = ?
Solution:
To solve this problem, we use one of the motion equations.
v² = u² + 2gh
v is the final velocity
u is the initial velocity
g is the acceleration due to gravity
h is the height
v² = 0² + (2 x 9.8 x 8.18)
v² = 160.3
v = 12.7m/s
All of the elements are made up of atoms. Every atom is made up of 3 subatomic particles known as the electrons, protons and neutrons. Electrons are negatively charged particles while the protons are the positively-charged particles. Lastly, neutrons do not have any charge.
Vi = 15 m/s
t = 2 s
a = 9.8 m/s^2
y = ?
The kinematic equation that has all of our variables is d = Vi*t + 0.5*a*t^2
y = 15*2 + 0.5*9.8*2^2 = 49.6 m
Answer:
The magnitude of applied force,parallel to the incline is 575.38 N and parallel to the floor is 605 N.
Explanation:
Given:
Mass of the piano
= 190 kg
Inclined angle
= 18 degree
Considering gravity,
= 9.8
And
Using,
and 
<em>FBD diagram is attached with all the force acting on the floor and and the inclined. </em>
We have to find the magnitude of forces,when the man pushes it parallel to the incline and to the floor.
a.
When the man pushes it parallel to the incline.
Balancing the forces as
.
⇒ 
⇒ 
⇒ Here it is negative as the force is acting downward.
⇒ Plugging the values of mass
and angle
.
⇒ 
⇒
N
b.
When the force is parallel to the floor.
⇒ 
⇒ 
⇒ Plugging the values.
⇒ 
⇒
N
So,
The magnitude of applied force in inclined direction is 575.38 Newton and parallel to the floor is 605 N.