1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Tju [1.3M]
3 years ago
7

Will a planet or comet be moving faster in its orbit when it is farther from or closer to the sun?

Physics
1 answer:
anastassius [24]3 years ago
5 0

No difference.

A planet, asteroid, space station, rock, empty fuel tank, asteroid,
lost space probe, TV satellite, orbiting telescope, moon, or comet,
if they're traveling in the same orbit around the same central body,
all have the same speed at the same point in the orbit.

You might be interested in
An orbiting satellite can become charged by the photoelectric effect when sunlight ejects electrons from its outer surface. Sate
Rufina [12.5K]

Answer:

the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm

Explanation:

Given data

Φ = 5.32 eV

to find out

the longest wavelength

solution

we know that

hf = k(maximum) +Ф   ...............1

here we consider k(maximum ) will be zero because photon wavelength max when low photon energy

so hf = 0

and hc/ λ = +Ф

so λ = hc/Ф  ................2

now put value hc = 1240 ev nm and Φ = 5.32 eV

so hc = 1240 / 5.32

hc = 233 nm

the longest wavelength of incident sunlight that can eject an electron from the platinum is 233 nm

8 0
3 years ago
Two vehicles A and B accelerate uniformly from rest.
spayn [35]

Answer:

(i) Please find attached the required velocity time graphs plotted with MS Excel

(ii) The velocity of vehicle A at the 18th second = 20 m/s

The velocity of vehicle B at the 18th second = 0 m/s

(iii) The distance between the two vehicles at the moment in (ii) above is 60 meters

Explanation:

The given parameters of the motion of vehicles A and B are;

The acceleration of vehicles A and B = Uniform acceleration starting from rest

The maximum velocity attained by vehicle A = 30 m/s

The time it takes vehicle A to attain maximum velocity = 10 s

The maximum velocity attained by vehicle B = 30 m/s

The time it takes vehicle B to attain maximum velocity = The time it takes vehicle A to attain maximum velocity = 10 s

The time duration vehicle A maintains its maximum velocity = 6 s

The time duration vehicle B maintains its maximum velocity = 4 s

(i) From the question, we get the following table;

\begin{array}{ccc}Time &V_A&V_B\\0&0&0\\10&30&40\\14&30&40\\16&30&20\\18&20&0\\22&0&\end{array}

From the above table the velocity time graphs of vehicles A and B is created with MS Excel and can included here

(ii) The velocity of vehicle A at the start = 0 m/s

After accelerating for 10 seconds, the velocity of vehicle A = The maximum velocity of vehicle A = 30 m/s

The maximum velocity is maintained for 6 seconds which gives;

At 10 s + 6 s = 16 s, the velocity of vehicle A = 30 m/s

The time it takes vehicle A to decelerate to rest = 6 s

The deceleration of vehicle A, a_A = (30 m/s - 0 m/s)/(6 s) = 5 m/s²

Therefore, we get;

v = u - a_A·t

At the 18th second, the deceleration time, t = 18 s - 16 s = 2 s

u = 30 m/s

∴ v₁₈ = 30 - 5 × 2 = 20

The velocity of vehicle A at the 18th second, V_{18A} = 20 m/s

For vehicle B, we have;

At the 14th second, the velocity of vehicle B = 40 m/s

Vehicle B decelerates to rest in, t = 4 s

The deceleration of vehicle B, a_B = (40 m/s - 0 m/s)/(4 s) = 10 m/s²

For vehicle B, at the 18th second, t = 18 s - 14 s = 4 s

∴ v_{18B} = 40 m/s - 10 m/s² × 4 s = 0 m/s

The velocity of the vehicle B at 18th second, v_{18B} = 0 m/s

(iii) The distance covered by vehicle A up to the 18th second is given by the area under the velocity-time graph as follows;

The area triangle A₁ = (1/2) × 10 × 30 = 150

Area of rectangle, A₂ = 6 × 30 = 180

Area of trapezoid, A₃ = (1/2) × (30 + 20) × 2 = 50

The distance covered in the 18th second by vehicle S_A = A₁ + A₂ + A₃

∴ S_A = 150 + 180 + 50 = 380

The distance covered in the 18th second by vehicle S_A = 380 m

The distance covered by the vehicle B in the 18th second is given by the area under the velocity time graph of vehicle B as follows;

Area of trapezoid, A₅ = (1/2) × (18 + 4) × 40 = 440

The distance covered by the trapezoid, S_B = 440 m

The distance of the two vehicles apart at the 18t second, S_{AB} = S_B - S_A

∴ S_{AB} = 440 m - 380 m = 60 m

The distance of the two vehicles from one another at the 18th second, S_{AB} = 60 m.

5 0
3 years ago
Your friend says that the second law of thermodynamics can't be true because life itself is a highly ordered system that wouldn'
spayn [35]
This topic is actually quite controversial, but the answer in this case would be C. 

Just some food for thought, the 2nd law of thermodynamics entropy of the universe is always increasing, but that doesn't necessarily mean that earth's entropy has to. As long as the net change in entropy of the universe is increasing it doesn't matter if one planet is decreasing a nominal amount. Next, Earth as said is not a closed system and you could argue that the sunlight and energy from the sun is increasing the total energy within the system that is earth meaning that it is increasing in entropy. Next, if you consider increasing entropy as an increase in the number of possible permutations that the universe or parts of the universe can take, then it is completely possible that an ordered planet and life is possible, although rare. This theory explains why there are so many life forms and why entropy is actually increasing when divergent evolution occurs. 
8 0
3 years ago
A box sliding on a horizontal frictionless surface runs into a fixed spring, compressing it a distance x1 from its relaxed posit
inn [45]

Answer:twice of initial value

Explanation:

Given

spring compresses x_1 distance for some initial speed

Suppose v is the initial speed and k be the spring constant

Applying conservation of energy

kinetic energy converted into spring Elastic potential energy

\dfrac{1}{2}mv^2=\dfrac{1}{2}kx_1^2----1

When speed doubles

\dfrac{1}{2}m(2v)^2=\dfrac{1}{2}kx_2^2----2

divide 1 and 2

\dfrac{1}{4}=\dfrac{x_1^2}{x_2^2}

x_2=2x_1

Therefore spring compresses twice the initial value

   

7 0
3 years ago
A clarinetist, setting out for a performance, grabs his 3.010 kg clarinet case (including the clarinet) from the top of the pian
KATRIN_1 [288]

Answer:

-0.481 m/s^2

Explanation:

The force equation of this problem is given as:

F - W = ma

where F = upward force holding the clarinet bag

W = downward force (weight of the clarinet)

The mass of the clarinet bag is 3.010 kg, therefore, its weight is:

W = mg

W = 3.010 * 9.8 = 29.498

F = 28.05 N

Therefore:

28.05 - 29.498 = 3.010 * a

-1.448 = 3.010a

=> a = -1.448 / 3.010

a = -0.481 m/s^2

The acceleration of the bag is downward.

8 0
3 years ago
Other questions:
  • Which form of radiation is used to directly INCREASE the temperature of water in a nuclear reactor?
    14·2 answers
  • A 9.5 kg object undergoes an acceleration of 3.3m/s^2. What is the magnitude of the next external force acting on it
    7·1 answer
  • I need help ASAP. This is for 15 points
    8·1 answer
  • A gas in a piston-cylinder assembly undergoes a compression process for which the relation between pressure and volume is given
    8·1 answer
  • When should you use a piece of pipe as a leverage extension on the handle on a wrench?
    5·1 answer
  • The shuttles main engine provides 154,360 kg of thrust for 8 minutes. If the shuttle accelerated at 29m/s/s, and fires for at le
    14·1 answer
  • What is involved in a career exploration
    15·2 answers
  • ANALOGY, Metal ions: buoys, as electrons: _____.
    15·2 answers
  • How much force is required to accelerate a 0.10 gram mosquito at 20m/?
    7·2 answers
  • The escape velocity of a bullet from the surface of planet Y is 1695.0 m/s. Calculate the escape velocity from the surface of th
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!