1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
riadik2000 [5.3K]
4 years ago
12

A tugboat tows a ship at a constant velocity. The tow harness consists of a single tow cable attached to the tugboat at point A

that splits at point B and attaches to the ship at points C and D. The two rope segments BC and BD angle away from the center of the ship at angles of ϕ = 26.0 ∘ and θ = 21.0 ∘, respectively. The tugboat pulls with a force of 1200 lb . What are the tensions TBC and TBD in the rope segments BC and BD?
Physics
1 answer:
Y_Kistochka [10]4 years ago
8 0

Answer:

The tensions in T_{BC} is approximately 4,934.2 lb and the tension in T_{BD} is approximately  6,035.7 lb

Explanation:

The given information are;

The angle formed by the two rope segments are;

The angle, Φ, formed by rope segment BC with the line AB extended to the center (midpoint) of the ship = 26.0°

The angle, θ, formed by rope segment BD with the line AB extended to the center (midpoint) of the ship = 21.0°

Therefore, we have;

The tension in rope segment BC = T_{BC}

The tension in rope segment BD = T_{BD}

The tension in rope segment AB = T_{AB} = Pulling force of tugboat = 1200 lb

By resolution of forces acting along the line A_F gives;

T_{BC} × cos(26.0°) + T_{BD} × cos(21.0°) = T_{AB} = 1200 lb

T_{BC} × cos(26.0°) + T_{BD} × cos(21.0°) = 1200 lb............(1)

Similarly, we have for equilibrium, the sum of the forces acting perpendicular to tow cable = 0, therefore, we have;

T_{BC} × sin(26.0°) + T_{BD} × sin(21.0°) = 0...........................(2)

Which gives;

T_{BC} × sin(26.0°) = - T_{BD} × sin(21.0°)

T_{BC} = - T_{BD} × sin(21.0°)/(sin(26.0°))  ≈ - T_{BD} × 0.8175

Substituting the value of, T_{BC}, in equation (1), gives;

- T_{BD} × 0.8175 × cos(26.0°) + T_{BD} × cos(21.0°) = 1200 lb

- T_{BD} × 0.7348  + T_{BD} ×0.9336 = 1200 lb

T_{BD} ×0.1988 = 1200 lb

T_{BD} ≈ 1200 lb/0.1988 = 6,035.6938 lb

T_{BD} ≈ 6,035.6938 lb

T_{BC} ≈ - T_{BD} × 0.8175 = 6,035.6938 × 0.8175 = -4934.1733 lb

T_{BC} ≈ -4934.1733 lb

From which we have;

The tensions in T_{BC} ≈ -4934.2 lb and  T_{BD} ≈ 6,035.7 lb.

You might be interested in
__ modified the concept by adding an internal combustion engine and marketing hybrids that were part electric and part gas power
navik [9.2K]

Hybrid

<u>Hybrid</u> modified the concept by adding an internal combustion engine and marketing hybrids that were part electric and part gas powered.

  • The driving wheels of hybrid vehicles receive power from their drivetrains.
  • A hybrid car has numerous sources of propulsion.
  • There are numerous hybrid configurations.
  • A hybrid vehicle might, for instance, get its energy from burning gasoline while alternating between an electric motor and a combustion engine.
  • Although they have primarily been employed for rail locomotives, electrical vehicles have a long history of integrating internal combustion and electrical transmission, like in a diesel-electric power-train.
  • Because the electric drive transmission directly substitutes the mechanical gearbox rather than serving as an additional source of motive power, a diesel-electric powertrain does not meet the definition of a hybrid.
  • Only the electric/ICE hybrid car type was readily accessible on the market as of 2017.
  • One type used parallel operation to power both motors at the same time.
  • Another ran in series, using one source to supply power solely and the other to supply electricity.
  • Either source may act as the main driving force, with the other source serving to strengthen the main.

To learn more about hybrid vehicles visit:

brainly.com/question/14610495

#SPJ4

3 0
2 years ago
The drawing shows a wire composed of three segments, AB, BC, and CD. There is a current of I = 2.0 A in the wire. There is also
alexdok [17]

Answer:

The magnitude of the magnetic force acting on the wire is zero, because the magnetic field is parallel to the wire.

In fact, the magnetic force exerted by the magnetic field on the wire is

where I is the current in the wire, L the length of the wire, B the magnetic field intensity and  the angle between the direction of B and the wire. In our problem, B and the wire are parallel, so the angle is  and so , therefore the magnetic force is zero: F=0.

7 0
3 years ago
a 2.0-mole sample of an ideal gas is gently heated at constant temperature 330 k. it expands from initial volume 19 l to final v
shutvik [7]
Isothermal Work =  PVln(v₂/v₁)

PV = nRT =  2 mole * 8.314 J/ (k.mol) * 330 k = 5487.24 J

Isothermal Work =  PVln(v₂/v₁)            v₂ = ? v₁ = 19L, 

1.7 kJ = (5487.24)In(v₂/19)

1700 = (5487.24)In(v₂/19)

In(v₂/19) = (1700/5487.24) = 0.3098

In(v₂/19) = 0.3098

(v₂/19) = e^{0.3098}


v₂  =  19* e^{0.3098}

v₂ = 25.8999

v₂ ≈ 26 L        Option b.
6 0
3 years ago
A spring gun is made by compressing a spring in a tube and then latching the spring at the compressed position. A 4.97-g pellet
dimaraw [331]

Answer:

v  = 2.8898 \frac{m}{s}

Explanation:

This is a problem easily solve using energy conservation. As there are no non-conservative forces, we know that the energy is conserved.

When the spring is compressed downward, the spring has elastic potential energy. When the spring is relaxed, there is no elastic potential energy, but the pellet will have gained gravitational potential energy and kinetic energy. Lets see what are the terms for each of this.

<h3>Elastic potential energy</h3>

We know that a spring following Hooke's Law has a elastic potential energy:

E_{ep} = \frac{1}{2} k (\Delta x)^2

where \Delta x is the displacement from the relaxed length and k is the spring's constant.

To obtain the spring's constant, we know that Hooke's law states that the force made by the spring is :

\vec{F} = - k \Delta \vec{x}

as we need 9.12 N to compress 4.60 cm, this means:

k = \frac{9.12 \ N}{4.6 \ 10^{-2} \ m}

k = 198.26 \ \frac{ N}{m}

So, the elastic energy of the compressed spring is:

E_{ep} = \frac{1}{2} 198.26 \ \frac{ N}{m} (4.6 \ 10^{-2} \ m)^2

E_{ep} = 0.209759 \ Joules

And when the spring is relaxed, the elastic potential energy will be zero.

<h3>Gravitational potential energy</h3>

To see how much gravitational potential energy will the pellet win, we can use

\Delta E_{gp} = m g \Delta h

where m is the mass of the pellet, g is the acceleration due to gravity and \Delta h is the difference in height.

Taking all this together, the gravitational potential energy when the spring is relaxed will be:

\Delta E_{gp} = 4.97 \ 10^{-3} kg \ 9.8 \frac{m}{s^2} 4.6 \ 10^{-2} m

\Delta E_{gp} = 0.00224 \ Joules

<h3>Kinetic Energy</h3>

We know that the kinetic energy for a mass m moving at speed v is:

E_k = \frac{1}{2} m v^2

so, for the pellet will be

E_k = \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

<h3>All together</h3>

By conservation of energy, we know:

E_{ep} = \Delta E_{gp} + E_k

0.209759 \ Joules = 0.00224 \ Joules + \frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2

So

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.209759 \ Joules - 0.00224 \ Joules

\frac{1}{2} \ 4.97 \ 10^{-3} kg \ v^2  = 0.207519 \ Joules

v  = \sqrt{ \frac{ 0.207519 \ Joules}{ \frac{1}{2} \ 4.97 \ 10^{-3} kg } }

v  = 2.8898 \frac{m}{s}

7 0
3 years ago
PLS HELP, I AM WILLING TO MARK BRAINLIEST TO FIRST ANSWER AND HAS TOO BE RIGHT
Ann [662]
Weak winds that blow for short periods of time with a short fetch.
6 0
3 years ago
Read 2 more answers
Other questions:
  • Technician A says if a fuse burns out when a switch is turned on, a short circuit is present before the switch. Technician B say
    8·1 answer
  • A skydiver is jumping from an airplane traveling at 10.0 m/s. The plane is 3520 m above the earth. The sky diver pulls his cord
    11·2 answers
  • How to do gizmos for science
    15·1 answer
  • Choose the correct statement of Kirchhoff's voltage law.
    8·1 answer
  • What layer of the atmosphere contains all of the weather and thus the most water vapor?
    10·1 answer
  • What is the quantity of heat energy required to convert 10g cube of ice at -30oC to steam at 120oC. also draw a graph of tempera
    9·1 answer
  • Of the 5000 species of mammals, 250 species are carnivorous. What is the ratio of carnivorous to mammals?
    8·1 answer
  • Two objects of equal mass are a distance of 5.0 m apart and attract each other with a gravitational force of 3.0 x 10^-7 N find
    15·1 answer
  • A system has two possible energy states, E0 and E1 (with E1 &gt; E0). If the difference between these energy states grows (E0 an
    9·1 answer
  • A uniform solid sphere of unknown radius and mass floats exactly half-submerged in a fluid of density 999 kg/m3. Find the densit
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!