Answer: 272.82 drop/tile
Explanation:
Given that the Rain drops fall on a tile surface at a density of 4638 drops/ft2. There are 17 tiles/ft2. How many drops fall on each tile?
Tiles/ft^2 × drop/tiles = drop/ft^2
Tiles will cancel out. Leaving the answer to be drop/ ft^2
Substitutes all the magnitude of the above units.
17 × drop/tiles = 4638
Make drop/tiles the subject of formula
Drop/tiles = 4638/17
Drop/tiles = 272.82
Therefore, 272.82 drop/tile drops fall on each tile?
Answer:
1. The magnetic field encircles the wire in a counterclockwise direction
Explanation:
When we have a current carrying wire perpendicular to the screen in which the current flows out of the screen then by the Maxwell's right-hand thumb rule we place the thumb of our right hand in the direction of the current and curl the remaining fingers around the wire, these curled fingers denote the direction of the magnetic field which is in the counter-clock wise direction.
Ever current carrying conductor produces a magnetic field around it.
I believe the answer is A
<u>Answer:</u>
<h2>
All the waves are pertubations that propagate (transport) energy.</h2><h2>
</h2>
Nevertheless, they have some differences:
1. Light waves are<u> electromagnetic waves</u>, while sound and water waves are <u>mechanical waves</u>, this is the first and principal difference.
2. Electromagnetic waves can<u> propagate in vacuum</u> (they do not need a medium or material), but mechanical waves obligatory need a material to propagate
3. Light waves are always <u>transversal waves</u>, this means <u>the oscillatory movement is in a direction that is perpendicular to the propagation</u>; but mechanical waves may be both: <u>longitudinal waves</u> (the oscillation occurs in the same direction as the propagation) or transversal waves.
4. Electromagnetic waves propagates at a <u>constant velocity</u> (Light velocity) while the velocity of mechanical waves will depend on the type of wave and the <u>density</u> of the medium or material.
5. <u>Mechanical waves</u> are characterized by the regular variation of a single magnitude, while <u>electromagnetic waves</u> are characterized by the variation of two magnitudes: the electric field and the magnetic field
6. <u>Water waves</u> are 2-dimensional waves, while the <u>light and the sound</u> are tridimensional spherical waves
7. Light waves <u>transports energy in the form of </u><u>radiation</u>, while mechanical waves t<u>ransport energy with </u><u>material</u>
Answer:
i. The radius 'r' of the electron's path is 4.23 ×
m.
ii. The frequency 'f' of the motion is 455.44 KHz.
Explanation:
The radius 'r' of the electron's path is called a gyroradius. Gyroradius is the radius of the circular motion of a charged particle in the presence of a uniform magnetic field.
r = 
Where: B is the strength magnetic field, q is the charge, v is its velocity and m is the mass of the particle.
From the question, B = 1.63 ×
T, v = 121 m/s, Θ =
(since it enters perpendicularly to the field), q = e = 1.6 ×
C and m = 9.11 ×
Kg.
Thus,
r =
÷ sinΘ
But, sinΘ = sin
= 1.
So that;
r = 
= (9.11 ×
× 121) ÷ (1.6 ×
× 1.63 ×
)
= 1.10231 ×
÷ 2.608 × 
= 4.2266 ×
= 4.23 ×
m
The radius 'r' of the electron's path is 4.23 ×
m.
B. The frequency 'f' of the motion is called cyclotron frequency;
f = 
= (1.6 ×
× 1.63 ×
) ÷ (2 ×
× 9.11 ×
)
= 2.608 ×
÷ 5.7263 × 
= 455442.4323
f = 455.44 KHz
The frequency 'f' of the motion is 455.44 KHz.