1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Naddik [55]
3 years ago
8

A 2.20-kg object is attached to a spring and placed on frictionless, horizontal surface. A horizontal force of 29.0 N is require

d to hold the object at rest when it is pulled 0.200 m from its equilibrium position (the origin of the x axis). The object is now released from rest from this stretched position, and it subsequently undergoes simple harmonic oscillations. (a) Find the force constant of the spring. N/m (b) Find the frequency of the oscillations. Hz (c) Find the maximum speed of the object. m/s (d) Where does this maximum speed occur? x = ± m (e) Find the maximum acceleration of the object. m/s2 (f) Where does the maximum acceleration occur? x = ± m (g) Find the total energy of the oscillating system. J (h) Find the speed of the object when its position is equal to one-third of the maximum value. m/s (i) Find the magnitude of the acceleration of the object when its position is equal to one-third of the maximum value. m/s2
Physics
1 answer:
g100num [7]3 years ago
8 0

Answer:

a. 145 N/m b. 1.29 Hz c. 1.62 m/s d.  0 m e. 13.2 m/s² f. ± 0.2 m g. 2.9 J h. 0.54 m/s i. 4.39 m/s²

Explanation:

a. The force constant of the spring

The spring force F = kx and k = F/x where k is the spring constant. F = 29.0 N and x = 0.200 m

k = 29.0 N/0.200 m = 145 N/m

b. The frequency of oscillations, f

f = 1/2π√(k/m)    m = mass = 2.20 kg

f = 1/2π√(145 N/m/2.20 kg) = 1.29 Hz

c. maximum speed of the object

The maximum elastic potential energy of the spring = maximum kinetic  energy of the object

1/2kx² = 1/2mv²

v = (√k/m)x where v is the maximum speed of the object

v = (√145/2.2)0.2 = 1.62 m/s

d Where does the maximum speed occur?

The maximum speed occurs at  0 m

e. The maximum acceleration

a = kx/m = 145 × 0.2/2.2 = 13.2 m/s²

f. The maximum acceleration occurs at x = ± 0.2 m

g. The total energy of the system is the maximum elestic potential energy of the system

E = 1/2kx² = 1/2 × 145 × 0.2² = 2.9 J

h. When x = x₀/3

1/2k(x₀/3)² = 1/2mv²

kx₀²/9 = mv²

v = 1/3(√k/m)x₀ = 1/3(√145/2.2)0.2 = 0.54 m/s

i When x = x₀/3

a = kx₀/3m =  145 × 0.2/(2.2 × 3)= 4.39 m/s²

You might be interested in
what is the position of centre of curvature for concave and convex mirror show with the help of diagram if you can​
Anon25 [30]

it is the point at infinity where it is at a distance from the curve equal to the radius of curvature lying on the normal vector. Sorry no diagram

8 0
3 years ago
How is a coil of current carrying wire similar to a bar magnet
zalisa [80]

Answer:

 When an electric current flows, the shape of the magnetic field is very similar to the field of a bar magnet

Explanation:

5 0
2 years ago
The three forces shown act on a particle. what is the direction of the resultant of these three forces?
melisa1 [442]
Missing figure: http://d2vlcm61l7u1fs.cloudfront.net/media/f5d/f5d9d0bc-e05f-4cd8-9277-da7cdda3aebf/phpJK1JgJ.png

Solution:
We need to find the magnitude of the resultant on both x- and y-axis.

x-axis) The resultant on the x-axis is
F_x = 65 N\cdot cos 30^{\circ} - 30 N - 20 N\cdot sin 20^{\circ} = 19.45 N
in the positive direction.

y-axis) The resultant on the y-axis is
F_y = 65 N \cdot sin 30^{\circ} - 20 N \cdot cos 20^{\circ} = 13.70 N
in the positive direction.

Both Fx and Fy are positive, so the resultant is in the first quadrant. We can find the angle and so the direction using
\tan \alpha =  \frac{F_y}{F_x} = \frac{13.70 N}{19.45 N}=0.7
from which we find 
\alpha=35^{\circ}
7 0
3 years ago
I need help fast please help
Irina18 [472]
A and C Im pretty sure :)
5 0
3 years ago
the temperature of a 2.0-kg increases by 5*c when 2,000 J of thermal energy are added to the block. What is the specific heat of
nata0808 [166]
To calculate the specific heat capacity of an object or substance, we can use the formula

c = E / m△T

Where
c as the specific heat capacity,
E as the energy applied (assume no heat loss to surroundings),
m as mass and
△T as the energy change.

Now just substitute the numbers given into the equation.

c = 2000 / 2 x 5
c = 2000/ 10
c = 200

Therefore we can conclude that the specific heat capacity of the block is 200 Jkg^-1°C^-1
3 0
3 years ago
Other questions:
  • An object with an initial velocity of 3.0 m/s has a constant acceleration of 2.0 m/s2. When its speed is 19.0 m/s, how far has i
    6·1 answer
  • ¿Cuál es el rango de frecuencias comprendido entre las longitudes de onda de 220 nm, 350 nm,
    14·1 answer
  • A 32-cm-long solenoid, 1.8 cm in diameter, is to produce a 0.30-T magnetic field at its center. If the maximum current is 4.5 A,
    11·1 answer
  • Which part of the iceberg displaces water equal in weight to the buoyant force
    6·2 answers
  • A skydiver has a mass of 110 kg. At what speed will she have a momentum
    13·2 answers
  • 1. How much force would you have to apply to a 15kg object in order to accelerate it!<br> a 2 m/s?
    8·1 answer
  • An 800-kHz radio signal is detected at a point 4.5 km distant from a transmitter tower. The electric field amplitude of the sign
    13·1 answer
  • HELP PLS MARKING BRANLIST 100 Pts TAKING TEST RN
    10·1 answer
  • 11) mWhich of the following sets of three units are all metric measurements
    11·1 answer
  • A red light means to stop. If you are turning from a two-way road or onto a two-way road, then you are NOT allowed to turn
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!