The balanced chemical reaction is:
N2 + 3H2 = 2NH3
We are given the amount of hydrogen gas to be used in the reaction. This will be the starting point of the calculations.
24.0 mol H2 (2 mol NH3 / 3 mol H2 ) = 16 mol NH3
Therefore, ammonia produced from the reaction given is 16 moles.
Explanation:
magnesium Hydroxide + Hydrochloric react together and give us magnesium chloride + water
Answer: polyatomic
Explanation:hope you find helpful
Using PV=nRT or the ideal gas equation, we substitute n= 15.0 moles of gas, V= 3.00L, R equal to 0.0821 L atm/ mol K and T= 296.55 K and get P equal to 121.73 atm. The Van der waals equation is (P + n^2a/V^2)*(V-nb) = nRT. Substituting a=2.300L2⋅atm/mol2 and b=0.0430 L/mol, P is equal to 97.57 atm. The difference is <span>121.73 atm- 97.57 atm equal to 24.16 atm.</span>
Answer:
Oxygen is a simple molecular structure, where individual oxygen atoms are bonded to each other by strong covalent bonds. Hence, a low amount of energy is required to overcome these weak forces and oxygen has a low boiling point. Therefore, at room temperature, oxygen is a gas. Oxygen difluoride is a colorless gas, condensable to a pale yellow liquid, with a slightly irritating odor. It is the most stable of the compounds of fluorine and oxygen, which include O,F,, O,F, and 0,F2 but nevertheless it is a strong oxidizing and fluorinating agent. Oxygen Difluoride is a colorless gas or a yellowish-brown liquid with a foul odor. Just to finally link Joseph's answer to the question, oxygen difluoride will thus change from liquid to solid state when chilled from -220°c to -230°c. The boiling point of oxygen is -182.96 degrees Celsius (under 1 standard atmosphere). This means at temperatures below that point, oxygen is a solid or a liquid, and at temperatures above that point, oxygen is a gas. So at -183 degrees Celsius, oxygen is a liquid.
Explanation: