Answer:
A. the internal energy stays the same
Explanation:
From the first law of thermodynamics, "energy can neither be created nor destroyed but can be transformed from one form to another.
Based on this first law of thermodynamic, the new internal energy of the gas is the same as the internal energy of the original system.
Therefore, when the partition separating the two halves of the box is removed and the system reaches equilibrium again, the internal energy stays the same.
Potential energy, is energy due to its position.
Given: Mass m = 40 Kg; Height h = 50 m
Required: Potential energy P.E = ?
Formula: P.E = mgh P.E = (40 Kg)(9.8 m/s²)(50 m)
P.E = 19,600 J
Protons are tightly bound to the nucleus of atoms, and the nucleus is
'shielded' from the outside world by the 'cloud' of electrons around it.
It takes a lot of energy to separate a proton from the nucleus. When
that happens, it's a 'radioactive' or a 'nuclear' event, and the atom has
changed into an atom of a different substance. This isn't something
that's happening around us very often.
On the other hand, the electrons are on the outside of the atom, and
it's rather easy to convince an electron to leave its atom and flow off
to somewhere else.
The only one with two different alleles is d meaning it is heterozygous
D
Answer:
0.4455 m
Explanation:
g = Acceleration due to gravity = 9.81 m/s²
Total mass is

Here the spring constant is not given so let us assume it as 
Here, the forces are balanced

The springs are compressed by 0.4455 m