It goes in the downward direction
Answer:
1.98 m/s
Explanation:
To solve this, we would be using the law of conservation of energy, i.e total initial energy is equal to total final energy.
E(i) = E(f)
mgh = ½Iw² + ½mv²
Recall, v = wr, thus, w = v/r
Also, I = ½mr²
I = 0.5 * 5 * 2²
I = 10 kgm²
Remember,
mgh = ½Iw² + ½mv²
Substituting w for v/r, we have
mgh = ½I(v/r)² + ½mv²
Now, putting the values in the equation, we have
5 * 9.8 * 0.3 = ½ * 10 * (v/2)² + ½ * 5 * v²
14.7 = 1.25 v² + 2.5 v²
14.7 = 3.75 v²
v² = 14.7/3.75
v² = 3.92
v = √3.92
v = 1.98 m/s
Thus, the speed is 1.98 m/s
I think it might be immortal? Not sure what is your point
Answer: See explanation
Explanation:
The reason why astronomers think that the rates of impact for the Moon must have been higher earlier than 3.8 billion years ago is because on the older highlands, there are ten times more craters than on the younger maria.
It is believed that the impact rate was higher earlier and thus can be seen when the numbers of the craters that can be seen on the lunar highlands is being compared to that on the maria. It should be noted that there are about 10 times more craters that can be found on the highlands than those on the maria.
If there was a constant rate of impact throughout the history of the Moon, then the highlands be about 10 times older and therefore will have been formed about 38 billion years ago.