Answer:
Explanation:
Velocity of plane relative to ground V_pg = ?
Given the velocity in vector form ,
velocity of plane relative to air V_pw = 120 cos30 i + 120sin30j
V_wg = 60 i
V_pg = V_pw +V_wg
= 120 cos30 i + 120sin30j + 60i
= 164 i + 60 j
magnitude
=251 km / h
=
Answer:
The momentum would be doubled
Explanation:
The magnitude of the momentum of the freight train is given by:

where
m is the mass of the train
v is its speed
In this problem, we have that the speed of the train is unchanged, while the mass of the train is doubled:

therefore, the new momentum is

so, the momentum has also doubled.
<span>The velocity would be 54.2 m/s
We would use the equation 1/2mv^2top+mghtop = 1/2mv^2bottom+mghbottom where m is the mass of the bobsled(which can be ignored), vtop/bottom is the velocity of the bobsled at the top or bottom, g is gravity, and htop/bottom is the height of the bobsled at the top or bottom of the hill. Since the velocity of the bobsled at the top of the hill and height at the bottom of the hill are zero, 1/2mv^2top and mghbottom will equal zero. The equation will be mghtop=1/2mv^2bottom. Thus we would solve for v.</span>
Answer:
See the attached pictures for detailed steps.
Explanation: