<span>100 kilo joules
There are several phases that this problem undergoes and the final answer is the sum of all the energy used for each phase.
Phase 1. Heating of solid ethanol until its melting point.
Phase 2. Melting of the ethanol until it's completely liquid.
Phase 3. Heating of the liquid ethanol until it reaches its boiling point.
Phase 4. Boiling the ethanol until it's completely vapor.
To make things more interesting, some of our constant are per gram and some others are per mole. So let's calculate how many moles of ethanol we have.
Atomic weight carbon = 12.0107
Atomic weight hydrogen = 1.00794
Atomic weight oxygen = 15.999
Molar mass ethanol = 2*12.0107 + 6*1.00794 + 15.999 = 46.06804 g/mol
Moles ethanol = 75g / 46.06804 g/mol = 1.628026719 mol
Phase 1. Use the specific heat of solid ethanol and multiply by the number of degrees we need to change by the mass we have. So
0.97 J/g*K * 75 g * (-114c - -120c)
= 0.97 J/g*K * 75 g * 6K
= 436.5 J
Phase 2: Time to melt. Just need the moles and the enthalpy of fusion. So:
1.628026719 mol * 5.02 kJ/mol = 8.172694128 kJ
Phase 3: Heat to boiling. Just like heating to melting, just a different specific heat and temperature
2.3J/g*K * 75g * (78c - -114c)
= 2.3J/g*K * 75g * 192 K
= 33120 J
Phase 4: Boil it to vapor. Need moles and enthalpy of vaporization. So
1.628026719 mol * 38.56 kJ/mol = 62.77671027 kJ
Now let's add them together:
436.5 J + 8.172694128 kJ + 33120 J + 62.77671027 kJ
= 0.4365 kJ + 8.172694128 kJ + 33.120 kJ + 62.77671027 kJ
=104.5059044 kJ
Since the least precise datum we have is 2 significant figures, round the result to 2 significant figures, giving 100 kilo joules.</span>
Answer:
Balanced equation
CS2(l) + 3O2(g)------> CO2(g) + 2SO2(g)
Explanation:
For a chemical equation to be balanced, the number of atoms of each element on the left Hans side of the reaction equation must equal the number of atoms of that element on the right hand side of the reaction equation.
Atoms of oxygen are six on both sides of the reaction equation. Atoms of sulphur are two while there is only one atom of carbon on both sides of the reaction equation.
Answer:
Heat transfer in the atmosphere from the equatorial regions to higher latitudes occurs through the process of Convection
Explanation:
The equatorial regions of the earth's surface receive the most heat from the sun than any other region of the earth. This is because the are most directly in line with the direct heat from the sun.
Due to this heat from the sun, atmospheric air around the equatorial regions are hot and less dense than air in regions of higher latitudes, and thus, rises above the equator. The rising air at the equator is replaced by colder and denser air from higher latitudes north and south of the equator. As the rising air of the equatorial regions are being replaced by colder and denser air from higher latitudes, the hot and humid air moves away from the equator, toward regions of higher latitude, north and south thereby setting up a convection current of heat flow.
<u>Answer:</u> The volume of the container is 
<u>Explanation:</u>
To calculate the volume of water, we use the equation given by ideal gas, which is:

or,

where,
P = pressure of container = 200 kPa
V = volume of container = ? L
m = Given mass of water = 2.61 kg = 2610 g (Conversion factor: 1kg = 1000 g)
M = Molar mass of water = 18 g/mol
R = Gas constant = 
T = temperature of container = ![200^oC=[200+273]K=473K](https://tex.z-dn.net/?f=200%5EoC%3D%5B200%2B273%5DK%3D473K)
Putting values in above equation, we get:

Converting this into cubic meter, we use the conversion factor:

So, 

Hence, the volume of the container is 
The amount of mol is equal to the mass divided by the molar mass. (n= m/M) The molar mass in this case is (1+1+16=) 18g/mol. The amount of mol is (10/18=) 0,56.