Terms in this set (28) Explain how knowledge of chemistry can be a more informed citizens? Knowledge of chemistry and other sciences can help you evaluate the data presented, arrive at an informed opinion, and take appropriate action.
The density of a material is an intensive property.
<h3>
What is intensive property?</h3>
An intensive property of matter is one that does not change with the amount of matter. It is a bulk property, which means that it is a physical property that is independent of sample size or mass. An extensive property, on the other hand, is one that is affected by sample size.
<h3>What factors influence an intensive property?</h3>
Intensive properties are those that are determined solely by the characteristics of the material and not by its quantity - for example, density, temperature, refractive index, color, and pressure. Intensive properties are not additive, which means their value does not change when the amount of material is changed.
Learn more about the intensive property here:-
brainly.com/question/24909279
#SPJ4
Given the percentage composition of HC as C → 81.82 % and H → 18.18 %
So the ratio of number if atoms of C and H in its molecule can will be:
C : H = 81.82 12 : 18.18 1 C : H = 6.82 : 18.18 = 6.82 6.82 : 18.18 6.82 = 1 : 2.66 ≈ 3 : 8
So the Empirical Formula of hydrocarbon is:
C 3 H 8
As the mass of one litre of hydrocarbon is same as that of C O 2 The molar mass of the HC will be same as that of C O 2 i.e 44 g mol
Now let Molecular formula of the HC be ( C 3 H 8 ) n
Using molar mass of C and H the molar mass of the HC from its molecular formula is:
( 3 × 12 + 8 × 1 ) n = 44 n So 44 n = 44 ⇒ n = 1
Hence the molecular formula of HC is C 3 H 8
Does that help?
<span>A chemical bond is a lasting attraction between atoms, ions or molecules that enables the formation of chemical compounds. The bond may result from the electrostatic force of attraction between oppositely charged ions as in ionic bonds; or through the sharing of electrons as in covalent bonds. The strength of chemical bonds varies considerably; there are "strong bonds" or "primary bond" such as metallic, covalent or ionic bonds and "weak bonds" or "secondary bond" such as Dipole-dipole interaction, the London dispersion force and hydrogen bonding.</span>