Answer: GeH4 (Germanium(IV) Hydride)
Explanation:
A Binary molecular compound Hydrogen and a Group 4A element which is more more acidic than SiH4 in aqueous solution is GeH4.
The pKa of GeH4;
= 25
Whilst that of SiH4
= 35
The lesser the pKa the higher the Ka which means more acidic.
Gregor Mendel
Hope this helped !
Answer:
The correct answer is - 5 carbon compounds due to low to high intermolecular forces between their molecules.
Explanation:
Bottle C has gas in it and we know that alkane has carbon and hydrogen only which means they have a single sigma bond between them and very low intermolecular forces in between molecules and are present mostly at gaseous state. Thus, bottle C has alkane.
Alcohols have -OH group that can form rarely two pi bonds which means they have intermediate intermolecular force whereas acids have -cooH group with a high molecular force so bottle B with liquid is alcohol and A has acid.
<u>Answer: </u>The correct rate of the reaction is ![Rate=k[a][b]^5[c]^6](https://tex.z-dn.net/?f=Rate%3Dk%5Ba%5D%5Bb%5D%5E5%5Bc%5D%5E6)
<u>Explanation:</u>
Rate law of the reaction is the expression which expresses the rate of the reaction in the terms of the molar concentrations of the reactants with each term raised to the power of their respective stoichiometric coefficients in a balanced chemical equation.
For the given reaction:

The expression for the rate law will be: ![Rate=k[a][b]^5[c]^6](https://tex.z-dn.net/?f=Rate%3Dk%5Ba%5D%5Bb%5D%5E5%5Bc%5D%5E6)
Answer:
There was 450.068g of water in the pot.
Explanation:
Latent heat of vaporisation = 2260 kJ/kg = 2260 J/g = L
Specific Heat of Steam = 2.010 kJ/kg C = 2.010 J/g = s
Let m = x g be the weight of water in the pot.
Energy required to vaporise water = mL = 2260x
Energy required to raise the temperature of water from 100 C to 135 C = msΔT = 70.35x
Total energy required = 

Hence, there was 450.068g of water in the pot.