The correct answer is <span>Antoine-Laurent de Lavoisier. Hope this helps!</span>
The same
Explanation:
If a liquid substance is transferred to a different container, the volume of the liquid in the new container will remain the same.
The volumes of liquids are fixed and does not change. Wherever they are contained, just like solids, they maintain their constant space.
- Volume is the amount of space occupied by a body.
- Gases do not have fixed volume as they fill their containers and they take up the shape.
- Solids and liquids have a fixed volume.
- They do not change their volume.
learn more:
State of matter brainly.com/question/10972073
#learnwithBrainly
Thus BeF2 is of most covalent character.
Anyways, covalent/ionic character is a bit tricky to figure out; we measure the difference in electronegativity of two elements bonding together and we use the following rule of thumb: if the charge is 0 (or a little more), the bond is non-polar covalent; if the charge is > 0 but < 2.0 (some references say 1.7), the bond is polar covalent; if the charge is > 2.0 then the bond is ionic. Covalent character refers to smaller electronegativity difference while ionic character refers to greater electronegativity difference.
Now, notice all of our bonds are with F, fluorine, which has the highest electronegativity of 3.98. This means that to determine character we need to consider the electronegativities of the other elements -- whichever has the greatest electronegativity has the least difference and most covalent character.
Na, sodium, has electronegativity of 0.93, so our difference is ~3 -- meaning our bond is ionic. Ca, calcium, has 1.00, leaving our difference to again be ~3 and therefore the bond is ionic. Be, beryllium, has 1.57 yielding a difference of ~2.5, meaning we're still dealing with ionic bond. Cs, cesium, has 0.79, meaning our difference is again ~3 and therefore again our compound is of ionic bond. Lastly, we have Sr, strontium, with an electronegativity of 0.95 and therefore again a difference of roughly 3 and an ionic bond.
<span>
</span>
C. till .....................................................................