<em>Answer:</em>
<em>B.) A hot liquid or air that expands, becomes less dense, and rises or becomes more dense and sinks.</em>
<em>Explanation:</em>
<em>Convention is the movement caused within a fluid by the tendency of hotter and therefore less dense material to rise, and colder, denser material to sink under the influence of gravity, which consequently results in transfer of heat.</em>
Answer:
the first statement
Explanation:
hope this helps
please like and Mark as brainliest
Answer:
In He2 molecule,
Atomic orbitals available for making Molecular Orbitals are 1s from each Helium. And total number of electrons available are 4.
Molecular Orbitals thus formed are:€1s2€*1s2
It means 2 electrons are in bonding molecular orbitals and 2 are in antibonding molecular orbitals .
Bond Order =Electrons in bonding molecular orbitals - electrons in antibonding molecular orbitals /2
Bond Order =Nb-Na/2
Bond Order =2-2/2=0
Since the bond order is zero so that He2 molecule does not exist.
Explanation:
fourth period
The third period is similar to the second, except the 3s and 3p sublevels are being filled. Because the 3d sublevel does not fill until after the 4s sublevel, the fourth period contains 18 elements, due to the 10 additional electrons that can be accommodated by the 3d orbitals.
Answer:
The volume is increased.
Explanation:
According to <em>Charles' Law</em>, " <em>at constant pressure the volume and temperature of the gas are directly proportional to each other</em>". Mathematically this law is presented as;
V₁ / T₁ = V₂ / T₂ -----(1)
In statement the data given is,
T₁ = 10 °C = 283.15 K ∴ K = 273.15 + °C
T₂ = 20 °C = 293.15 K
So, it is clear that the temperature is being increased hence, we will find an increase in volume. Let us assume that the starting volume is 100 L, so,
V₁ = 100 L
V₂ = Unknown
Now, we will arrange equation 1 for V₂ as,
V₂ = V₁ × T₂ / T₁
Putting values,
V₂ = 100 L × 293.15 K / 283.15 K
V₂ = 103.52 L
Hence, it is proved that by increasing temperature from 10 °C to 20 °C resulted in the increase of Volume from 100 L to 103.52 L.