Answer: The early atmosphere
Explanation: Its early atmosphere was probably formed from the gases given out by volcanoes. It is believed that there was intense volcanic activity for the first billion years of the Earth's existence. The early atmosphere was probably mostly carbon dioxide, with little or no oxygen.
the oxygen atom
Explanation:
Water is a molecular compound consisting of polar molecules that have a bent shape. The oxygen atom acquires a partial negative charge while the hydrogen atom acquires a partial positive charge.
The molecular formula =C₆H₁₂O₆
<h3>Further explanation</h3>
Given
6.00 g of a certain compound X
The molecular molar mass of 180. g/mol
CO₂=8.8 g
H₂O=3.6 g
Required
The molecular formula
Solution
mass C in CO₂ :
= 1.12/44 x 8.8
= 2.4 g
mass H in H₂O :
= 2.1/18 x 3.6
= 0.4 g
Mass O in compound :
= 6-(2.4+0.4)
= 3.2 g
Mol ratio C : H : O
= 2.4/12 : 0.4/1 : 3.2/16
= 0.2 : 0.4 : 0.2
= 1 : 2 : 1
The empirical formula : CH₂O
(CH₂O)n=180 g/mol
(12+2+16)n=180
(30)n=180
n=6
(CH₂O)₆=C₆H₁₂O₆
Answer:
Examples of radioactive isotopes include carbon-14, tritium (hydrogen-3), chlorine-36, uranium-235, and uranium-238.
The balanced chemical equation would be as follows:
<span>K2PtCl4(aq) + 2NH3(aq) --> Pt(NH3)2Cl2(s) + 2KCl(aq)
We are given the amount of </span>K2PtCl4 to be used in the reaction. This will be the starting point for our calculations. We do as follows:
65 g K2PtCl4 ( 1 mol / 415.09 g ) ( 1 mol Pt(NH3)2Cl2 / 1 mol K2PtCl ) ( 300.051 g / 1 mol ) = 46.99 g Pt(NH3)2Cl produced