Answer:
This reaction is exothermic because the system shifted to the left on heating.
Explanation:
2NO₂ (g) ⇌ N₂O₄(g)
Reactant => NO₂ (dark brown in color)
Product => N₂O₄ (colorless)
From the question given above, we were told that when the reaction at equilibrium was moved from room temperature to a higher temperature, the mixture turned dark brown in color.
This simply means that the reaction does not like heat. Hence the reaction is exothermic reaction.
Also, we can see that when the temperature was increased, the reaction turned dark brown in color indicating that the increase in the temperature favors the backward reaction (i.e the equilibrium shift to the left) as NO₂ which is the reactant is dark brown in color. This again indicates that the reaction is exothermic because an increase in the temperature of an exothermic reaction will shift the equilibrium position to the left.
Therefore, we can conclude that:
The reaction is exothermic because the system shifted to the left on heating.
<span>Sulfuric acid has the highest production levels of any chemical in both the US and the world. The US alone creates 37 million tons a year. It has many uses, but one of the largest is as fertilizer.</span>
<span>The half-life of Carbon 14 and radionuclides are used to estimate the absolute (versus relative) age of pre-history items </span>
Answer:
I'm pretty sure that's right.
Explanation:
I would maybe say solid at higher temps