Answer:
See below
Explanation:
From periodic table, find Mole Weight of the element in question
this is the grams of the element in Avagadro's Number (6.022 x 10^23) of atoms
(5.50 x 10^22) / (6.022 x 10^23) x mole weight = grams
Answer:
Average atomic mass of the vanadium = 50.9415 amu
Isotope (I) of vanadium' s abundance = 99.75 %= 0.9975
Atomic mass of Isotope (I) of vanadium ,m= 50.9440 amu
Isotope (II) of vanadium' s abundance =(100%- 99.75 %) = 0.25 % = 0.0025
Atomic mass of Isotope (II) of vanadium ,m' = ?
Average atomic mass of vanadium =
m × abundance of isotope(I) + m' × abundance of isotope (II)
50.9415 amu =50.9440 amu× 0.9975 + m' × 0.0025
m'= 49.944 amu
Explanation:
Answer:
1. CaO + H₂O ----> Ca(OH)₂
Compound ----- Compound
2. 2 Na + Cl₂ ----> 2 NaCl
Element ----- Element
3. 2 SO₂ + O₂ ----> 2 SO₃
Element ----- Compound
Answer:
I definitely think he mostly observed that it was clear in color.
Explanation:
Answer:
Option d. 7
Explanation:
A mixture of a strong base and a strong acid produce a neutral salt and water.
This is the reaction of neutralization:
HCl + NaOH → NaCl + H₂O
NaCl → Na⁺ + Cl⁻
Sodium chloride is neutral salt which does not give H⁻ neither OH⁻ to medium, that's why pH is neutral.
Both ions are derivated from a strong acid and base so they do not make hydrolisis. They are a conjugate pair of a weak acid and base. The reactions can not occur:
Cl⁻ + H₂O ← OH⁻ + HCl
Na⁺ + H₃O⁺ ← NaOH + H₂O