
Here we go ~
1 mole of
has 6.022 × 10²³ molecules of the given compound.
So, 0.78 mole of
will have ~


Answer: The activation energy Ea for this reaction is 22689.8 J/mol
Explanation:
According to Arrhenius equation with change in temperature, the formula is as follows.
![ln \frac{k_{2}}{k_{1}} = \frac{-E_{a}}{R}[\frac{1}{T_{2}} - \frac{1}{T_{1}}]](https://tex.z-dn.net/?f=ln%20%5Cfrac%7Bk_%7B2%7D%7D%7Bk_%7B1%7D%7D%20%3D%20%5Cfrac%7B-E_%7Ba%7D%7D%7BR%7D%5B%5Cfrac%7B1%7D%7BT_%7B2%7D%7D%20-%20%5Cfrac%7B1%7D%7BT_%7B1%7D%7D%5D)
= rate constant at temperature
= 
= rate constant at temperature
=
= activation energy = ?
R= gas constant = 8.314 J/kmol
= temperature = 
= temperature = 
Putting in the values ::
![ln \frac{4.8\times 10^8}{2.3\times 10^8} = \frac{-E_{a}}{8.314}[\frac{1}{649} - \frac{1}{553}]](https://tex.z-dn.net/?f=ln%20%5Cfrac%7B4.8%5Ctimes%2010%5E8%7D%7B2.3%5Ctimes%2010%5E8%7D%20%3D%20%5Cfrac%7B-E_%7Ba%7D%7D%7B8.314%7D%5B%5Cfrac%7B1%7D%7B649%7D%20-%20%5Cfrac%7B1%7D%7B553%7D%5D)

The activation energy Ea for this reaction is 22689.8 J/mol
Explanation:
The radial distribution function gives the probability density for an electron to be found anywhere on the surface of a sphere located a distance r from the proton. Since the area of a spherical surface is 4πr2, the radial distribution function is given by 4πr2R(r)∗R(r).
I
1-pentyne consists of a carbon chain of 5 carbons one with a triple bond. 1-octyne is a carbon chain of 8 carbons with a triple bond at some point. It is known that the longer the carbon chain the higher the boiling point since more energy will be required to break the bonds between carbons. Based on this it is predicted that 1-octyne will have a higher boiling point than 1-pentyne.
The name come from the German 'Bisemutum' a corruption of 'Weisse Masse' meaning white mass.