HBr and HF are both monoprotic Arrhenius acids—that is, in aqueous solution, they dissociate and ionize to give hydrogen ions. A strong acid ionizes completely; a weak acid ionizes partially.
In this case, HBr, being a strong acid, would ionize completely in water to yield H+ and Br- ions. However, HF, being a weak acid, would ionize only to a limited extent: some of the HF molecules will ionize into H+ and F- ions, but most of the HF will remain undissociated.
pH is, by definition, a measurement of the concentration of hydrogen ions in solution (pH = -log[H+]). A higher concentration of hydrogen ions gives a lower pH, while a lower concentration of hydrogen ions gives a higher pH. At 25 °C, a pH of 7 indicates a neutral solution; a pH less than 7 indicates an acidic solution; and a pH greater than 7 indicates a basic solution.
If we have equal concentrations of HBr and HF, then the HBr solution will have a greater concentration of hydrogen ions in solution than the HF solution. Consequently, the pH of the HBr solution will be less than the pH of the HF solution.
Choice A is incorrect: Strong acids like HBr dissociate completely, not partially.
Choice B is incorrect: While the initial concentration of HBr and HF are the same, the H+ concentration in the HBr solution is greater. Since pH is a function of H+ concentration, the pH of the two solutions cannot be the same.
Choice C is correct: A greater H+ concentration gives a lower pH value. The HBr solution has the greater H+ concentration. Thus, the pH of the HBr solution would be less than that of the HF solution.
Choice D is incorrect for the reason why choice C is correct.
Answer:
more people may make more changes to it.
there is the answer to it!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
<h3>
Answer:</h3>
Gas law : Boyle's law
New pressure: 66.24 atm
<h3>
Explanation:</h3>
Concept tested: Gas laws (Boyle's law)
<u>We are given,</u>
- Initial pressure, P₁ = 2.86 atm
- Initial volume, V₁ = 8472 mL
- New volume, V₂ IS 365.8 mL
We need to determine the new pressure, P₂
- According to Boyle's law , the volume of a fixed mass of a gas and the pressure are inversely proportional at constant temperature.
- That is,

- This means , PV = k (constant)
- Therefore; P₁V₁ = P₂V₂
- Rearranging the formula, we can get the new pressure, P₂
P₂ = P₁V₁ ÷ V₂
= (2.86 atm × 8472 mL) ÷ 365.8 mL
= 66.24 atm
Therefore, the new pressure is 66.24 atm
Answer:
0.12M
Explanation:
A balanced equation for the reaction will go a great deal in obtaining our desired result. So, let us write a balanced equation for the reaction
HCl + NaOH —> NaCl + H2O
From the above equation,
nA (mole of the acid) = 1
nB (mole of the base) = 1
Data obtained from the question include:
Vb (volume of the base) = 30mL
Mb (Molarity of the base) = 0.1M
Va (volume of the acid) = 25mL
Ma (Molarity of the acid) =?
The molarity of the acid can be obtained as follow:
MaVa/MbVb = nA/nB
Ma x 25/ 0.1 x 30 = 1
Cross multiply to express in linear form
Ma x 25 = 0.1 x 30
Divide both side by 25
Ma = (0.1 x 30) / 25
Ma = 0.12M
The molarity of the acid is 0.12M
Answer:
kinetic energy than the potential energy it carries
Explanation: