Answer:
The measured redshift is z =2
Explanation:
Since the object is traveling near light speed, since v/c = 0.8, then we have to use a redshift formula for relativistic speeds.

Finding the redshift.
We can prepare the formula by dividing by lightspeed inside the square root to both numerator and denominator to get

Replacing the given information


Thus the measured redshift is z = 2.
Answer:
5.1*10^3 J/m^3
Explanation:
Using E = q/A*eo
And
q =75*10^-6 C
A = 0.25
eo = 8.85*10^-12
Energy density = 1/2*eo*(E^2) = 1/2*eo*(q/A*eo)^2 = [q^2] / [2*(A^2)*eo]
= [(75*10^-6)^2] / [2*(0.25)^2*8.85*10^-12]
= 5.1*10^3 J/m^3
Answer:
F = M a where M is acceleration and a is acceleration
a = x / s^2 = distance / time squared
The Newton is derived because mass, distance, and time are all fundamental units One would have to look at the fundamental requirements for these definitions, but they can all be repeated in a laboratory.
So the Newton is determined from these fundamental units and since the Joule equals Newton * Distance it is also derived from the fundamental units.
If one has the three fundamental units then one can derive the Joule and Newton.
Between 9:00 am and 10:45 am, there have been 1 hour and 45 minutes or 1.75 hours have passed. Let x be the speed of the slower cyclist and x+ 5 be the rate of the second cyclist. The given situation is best represented through the equation below,
x(1.75) + (x + 5)(1.75) = 47.25 km
The value of x from the equation is 11. Thus, the two bicyclists' rates are 11 km/h and 16 km/h.