Answer:
Same reading.
Explanation:
Assume that after the string breaks the ball falls through the liquid with constant speed. If the mass of the bucket and the liquid is 1.20 kg, and the mass of the ball is 0.150 kg,
A.) Before the string break, the total weight = weight of the can + weight of the water.
According to Archimedes' Principle which state that: “A body immersed in a liquid loses weight by an amount equal to the weight of the liquid displaced.” Archimedes principle also states that: “When a body is immersed in a liquid, an upward thrust, equal to the weight of the liquid displaced, acts on it
B.) After the string break.
The scale will have the same reading as before the string break.
Answer:
1985kg
Explanation:
assuming that
pi =3.14
oil density = 950kg/ cubic meter
g= 9.8m/s

Answer:
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
Explanation:
The Impulse Theorem states that the impulse experimented by the hockey park is equal to the vectorial change in its linear momentum, that is:
(1)
Where:
- Impulse, in kilogram-meters per second.
- Mass, in kilograms.
- Initial velocity of the hockey park, in meters per second.
- Final velocity of the hockey park, in meters per second.
If we know that
,
and
, then the impulse applied by the stick to the park is approximately:
![I = (0.2\,kg)\cdot \left(35\,\hat{i}\right)\,\left[\frac{m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%20%280.2%5C%2Ckg%29%5Ccdot%20%5Cleft%2835%5C%2C%5Chat%7Bi%7D%5Cright%29%5C%2C%5Cleft%5B%5Cfrac%7Bm%7D%7Bs%7D%20%5Cright%5D)
![I = 7\,\hat{i}\,\left[\frac{kg\cdot m}{s} \right]](https://tex.z-dn.net/?f=I%20%3D%207%5C%2C%5Chat%7Bi%7D%5C%2C%5Cleft%5B%5Cfrac%7Bkg%5Ccdot%20m%7D%7Bs%7D%20%5Cright%5D)
The impulse applied by the stick to the hockey park is approximately 7 kilogram-meters per second.
When someone stands against a locker and is does not moving at all, then there will be no displacement and since displacement = 0
Work done also becomes equal to zero.
Work done is usually defined as change in energy. Since the work done is zero there has been no energy used.
Answer:
14 m/s
Explanation:
u = 0, h = 10 m, g = 9.8 m/s^2
Use third equation of motion
v^2 = u^2 + 2 g h
Here, v be the velocity of ball as it just strikes with the ground
v^2 = 0 + 2 x 9.8 x 10
v^2 = 196
v = 14 m/s