1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Lynna [10]
3 years ago
11

A pulley can be thought of as an inclined plane wrapped around a cylinder

Physics
1 answer:
SashulF [63]3 years ago
8 0
Yes, and the use of that is to transfer energy so you don't have to put in as much force.
You might be interested in
A car is moving in a straight line with the same speed of 100 m/s ,the acceleration in this
Amiraneli [1.4K]

Answer:

a = 0m/s²

Explanation:

Average acceleration = (change in velocity)/(time it takes). Since the car's change in velocity is zero, its acceleration is zero.

4 0
3 years ago
An 80-kilogram skier slides on waxed skis along a horizontal surface of snow at constant velocity while pushing with his poles.
ivann1987 [24]

Answer:

The force F is created by the reaction of the Earth to the thrust of the rods, whereby the thrust is created by a force of action and reaction.

Explanation:

To answer this question, let's write Newton's second law of the two axes

Y Axis  

        Fy + N - W = 0

        Fy + N = W

X axis

       Fx - fr = 0

      Fx = fr

The force F is created by the reaction of the Earth to the thrust of the rods, whereby the thrust is created by a force of action and reaction.

   The direction of this force is along the length of the rods that are in an Angle, where the x and y components of the force come from

In general this force is small because the rubbing of the skis is small

8 0
3 years ago
PLEASE HELP ME 45 POINTS
sergij07 [2.7K]

Answer:

a) We kindly invite you to see the explanation and the image attached below.

b) The acceleration of the masses is 4.203 meters per square second.

c) The tension force in the cord is 28.02 newtons.

d) The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is 3.551 meters per second.

Explanation:

a) At first we assume that pulley and cord are both ideal, that is, masses are negligible and include the free body diagrams of each mass and the pulley in the image attached below.

b) Both masses are connected to each other by the same cord, the direction of acceleration will be dominated by the mass of greater mass (mass A) and both masses have the same magnitude of acceleration. By the 2nd Newton's Law, we create the following equation of equilibrium:

Mass A

\Sigma F = T - m_{A}\cdot g = -m_{A}\cdot a (1)

Mass B

\Sigma F = T - m_{B}\cdot g = m_{B}\cdot a (2)

Where:

T - Tension force in the cord, measured in newtons.

m_{A}, m_{B} - Masses of blocks A and B, measured in kilograms.

g - Gravitational acceleration, measured in meters per square second.

a - Net acceleration of the each block, measured in meters per square second.

By subtracting (2) by (1), we get an expression for the acceleration of each mass:

m_{B}\cdot a +m_{A}\cdot a = T-m_{B}\cdot g -T + m_{A}\cdot g

(m_{B}+m_{A})\cdot a = (m_{A}-m_{B})\cdot g

a = \frac{m_{A}-m_{B}}{m_{B}+m_{A}} \cdot g

If we know that m_{A} = 5\,kg, m_{B} = 2\,kg and g = 9.807\,\frac{m}{s^{2}}, then the acceleration of the masses is:

a = \left(\frac{5\,kg-2\,kg}{5\,kg+2\,kg}\right) \cdot\left(9.807\,\frac{m}{s^{2}} \right)

a = 4.203\,\frac{m}{s^{2}}

The acceleration of the masses is 4.203 meters per square second.

c) From (2) we get the following expression for the tension force in the cord:

T = m_{B}\cdot (a+g)

If we know that m_{B} = 2\,kg, g = 9.807\,\frac{m}{s^{2}} and a = 4.203\,\frac{m}{s^{2}}, then the tension force in the cord:

T = (2\,kg)\cdot \left(4.203\,\frac{m}{s^{2}}+9.807\,\frac{m}{s^{2}}  \right)

T = 28.02\,N

The tension force in the cord is 28.02 newtons.

d) Given that system starts from rest and net acceleration is constant, we determine the time taken by the block to cover a distance of 1.5 meters through the following kinematic formula:

\Delta y  = \frac{1}{2}\cdot a\cdot t^{2} (3)

Where:

a - Net acceleration, measured in meters per square second.

t - Time, measured in seconds.

\Delta y - Covered distance, measured in meters.

If we know that a = 4.203\,\frac{m}{s^{2}} and \Delta y = 1.5\,m, then the time taken by the system is:

t = \sqrt{\frac{2\cdot \Delta y}{a} }

t = \sqrt{\frac{2\cdot (1.5\,m)}{4.203\,\frac{m}{s^{2}} } }

t \approx 0.845\,s

The system will take approximately 0.845 seconds to cover a distance of 1.5 meters.

e) The final speed of the system is calculated by the following formula:

v = a\cdot t (4)

Where v is the final speed of the system, measured in meters per second.

If we know that a = 4.203\,\frac{m}{s^{2}} and t \approx 0.845\,s, then the final speed of the system is:

v = \left(4.203\,\frac{m}{s^{2}} \right)\cdot (0.845\,s)

v = 3.551\,\frac{m}{s}

The final speed of the system is 3.551 meters per second.

8 0
3 years ago
Changing the speed of a synchronous generator changes A) the frequency and amplitude of the output voltage. B) only the frequenc
Dmitrij [34]

Answer:

A) the frequency and amplitude of the output voltag

Explanation:

Changing the speed of a synchronous generator changes both the output voltage (amplitude of the wave) and frequency as they tend to increase.

Changing the speed regulator will change the engine throttle setting to maintain the speed.

While the power, torque, current, fuel flow rate and torque angle will have decreased.

8 0
3 years ago
A 65-kg person stands on a scale in a moving elevator while holding a 5.0 kg mass suspended from a massless spring with spring c
disa [49]

Answer:

The question is incomplete. However, I believe, it is asking for the acceleration of the elevator. This is 3.16 m/s².

Explanation:

By Hooke's law, F = ke

F is the force on a spring, k is the spring constant and e is the extension or compression.

From the question,

F = (1.08\text{ kN/m}) \times (6.0 \times 10^{-2}\text{ m}) = 64.8 \text{ N}

This is the force on the mass suspended on the spring. Its acceleration, a, is given by

F = ma

a = \dfrac{F}{m}

a = \dfrac{64.8 \text{ N}}{5\text{ kg}} = 12.96\text{ m/s}^2

This acceleration is more than the acceleration due to gravity, g = 9.8 m/s². Hence the elevator must be moving up with an acceleration of

12.96 - 9.8 m/s² = 3.16 m/s²

7 0
3 years ago
Other questions:
  • To hoist himself into a tree, a 72.0-kg man ties one end of a nylon rope around his waist and throws the other end over a branch
    5·1 answer
  • For a satellite to be in a circular orbit 950 km above the surface of the earth, what orbital speed must it be given?
    12·1 answer
  • A daredevil is shot out of a cannon at 45.0° to the horizontal with an initial speed of 31.0 m/s. A net is positioned a horizont
    12·2 answers
  • Read this because I need help pleaseeeeee !!!
    10·1 answer
  • When all of the magnetic domains line up on their own, the material is called ____________________.
    7·2 answers
  • A current of 17 A flows through a resistor of 10 2. What is the voltage<br> across the resistor
    10·1 answer
  • Two cellists, one seated directly behind the other in an orchestra, play the same note for the conductor who is directly in fron
    12·1 answer
  • A runner starts from rest and stops in 12 seconds. He covers
    5·1 answer
  • Sally and Suzy are moving into their first college dorm together. They are loading all their furniture onto a truck with a ramp
    13·1 answer
  • A 1500 kg elevator, suspended by a single cable with tension 16.0 kN, is measured to be moving upward at 1.2 m/s. Air resistance
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!