Lol .. a what - a wave ? You just greeting somebody basically when your waving at someone I don’t really get the question but :) help it’s okay !
Answer:
24,000 m
Explanation:
First find the rocket's final position and velocity during the first phase in the y direction.
Given:
v₀ = 75 sin 53° m/s
t = 25 s
a = 25 sin 53° m/s²
Find: Δy and v
Δy = v₀ t + ½ at²
Δy = (75 sin 53° m/s) (25 s) + ½ (25 sin 53° m/s²) (25 s)²
Δy = 7736.8 m
v = at + v₀
v = (25 sin 53° m/s²) (25 s) + (75 sin 53° m/s)
v = 559.0 m/s
Next, find the final position of the rocket during the second phase (as a projectile).
Given:
v₀ = 559.0 m/s
v = 0 m/s
a = -9.8 m/s²
Find: Δy
v² = v₀² + 2aΔy
(0 m/s)² = (559.0 m/s)² + 2 (-9.8 m/s²) Δy
Δy = 15945.5 m
The total displacement is:
7736.8 m + 15945.5 m
23682.2 m
Rounded to two significant figures, the maximum altitude reached is 24,000 m.
Missing figure and missing details can be found here:
<span>http://d2vlcm61l7u1fs.cloudfront.net/media%2Fdd5%2Fdd5b98eb-b147-41c4-b2c8-ab75a78baf37%2FphpEgdSbC....
</span>
Solution:
(a) The work done by the spring is given by

where k is the elastic constant of the spring and

is the stretch between the initial and final position. Since x1=-8 in=-0.203 m and x2=5 in=0.127 m, we have

(b) The work done by the weight is the product of the component of the weight parallel to the inclined plane and the displacement of the cart:

where the negative sign is given by the fact that

points in the opposite direction of the displacement of the cart, and where

therefore, the work done by the weight is
Answer: 1 Newton
Explanation:
"Every action has an equal and opposite reaction."
Please mark as Brainliest if it is correct.