V (speed) = F (frequency) x Wavelength
If we rearrange the formula, making frequency the subject;
F (frequency) = Speed ÷ Wavelength
F = 300,000 m\s x 4.5 e -10m
F = 0.08810409956 Hz
Answer:
Current, I = 0.000109 Amps
Explanation:
Given the following data;
Voltage = 6V
Resistance = 55,000 Ohms
To find the current flowing through the circuit;
Ohm's law states that at constant temperature, the current flowing in an electrical circuit is directly proportional to the voltage applied across the two points and inversely proportional to the resistance in the electrical circuit.
Mathematically, Ohm's law is given by the formula;
Where;
V represents voltage measured in voltage.
I represents current measured in amperes.
R represents resistance measured in ohms.
Making current the subject of formula, we have;
Substituting into the formula, we have;
Current, I = 0.000109 Amps
Question is from B to C
Answer: (b) 1.5m/s
x1=3m, x2=9m
t1=1s, t2=5s
Displacement, ∆x=(9-3)m=6m
Time elapsed, ∆t=(5-1)s=4s
So average velocity v =∆x/∆t=6/4=1.5m/s
Answer:
0,00123 = 1,2*10^{-3}
Explanation:
To write down correctly the number 0,00123 in scientific notation, you take into account that the scientific notation demands that there in only one number after the comma ( , ). Furthermore, it is necessary that you move the comma to the right of the first number different of zero, in this case the number 1. To do this you move the comma three positions.
Then, you have to multiply the expresion 1.23 by 10 with an exponential -3 (because of the movement of the comma in three positions). That is:
0,00123 = 1,23*10^{-3}
But it is mandatory that nly one number can stay after the comma, so, you approximate the number three. In this case, the number is lower than 5, hence, you approximate 3 to 0.
Finally, you have:
0,00123 = 1,2*10^{-3}