Answer:
H2(g)+I2(s)→2HI(s)
Explanation:
Hello there!
In this case, according to the given information and unbalanced chemical reaction, we infer it must be balanced in agreement with the law of conservation of mass because the reactants side has two hydrogen and iodine atoms whereas the products side has just one. In such a way, by placing a 2 on HI, we obtain the following balanced reaction:
H2(g)+I2(s)→2HI(s)
Regards!
Answer:
The mass of the precipitate that AgCl is 3.5803 g.
Explanation:
a) To calculate the molarity of solution, we use the equation:

We are given:
Mass of solute (NaCl) = 1.46 g
Molar mass of sulfuric acid = 58.5 g/mol
Volume of solution = 

Putting values in above equation, we get:

0.09982 M is the concentration of the sodium chloride solution.
b) 
Moles of NaCl = 
according to reaction 1 mol of NaCl gives 1 mol of AgCl.
Then 0.02495 moles of NaCl will give:
of AgCl
Mass of 0.02495 moles of AgCl:

The mass of the precipitate that AgCl is 3.5803 g.
The area is 60.2, to find area it's length times width.
Answer : The volume of the cube is, 
Solution : Given,
Density of nickel = 
Number of nickel atoms = 
Molar mass of nickel = 58.7 g/mole
First we have to calculate the moles of nickel.
As,
atoms form 1 mole of nickel
So,
atoms form
moles of nickel
The moles of nickel = 3.321 moles
Now we have to calculate the mass of nickel.


The mass of nickel = 194.94 g
Now we have to calculate the volume of nickel.



Therefore, the volume of the cube is, 
Answer:
8 moles of C
Explanation:
From the question given above, the following equation was obtained:
3A + 2B —> 6C
From the equation above,
3 moles of A reacted to produce 6 moles of C.
Thus, the number of mole of C produced by reacting 4 moles of A can be obtained as follow:
From the equation above,
3 moles of A reacted to produce 6 moles of C.
Therefore, 4 moles of C will react to produce = (4 × 6)/3 = 8 moles of C
Thus, 8 moles of C can be obtained from the reaction of 4 moles of A with excess B