Answer:
0.158 moles
Explanation:
We are given;
9.50 x 10^22 molecules of CO
We are required to determine the number of moles;
We need to know;
1 mole of a compound = 6.022 × 10^23 molecules
Therefore;
9.50 x 10^22 molecules of CO will be equivalent to;
= 9.50 x 10^22 molecules ÷ 6.022 × 10^23 molecules/mole
= 0.158 moles
Therefore, the number of moles are 0.158 moles

Here's the balanced equation for given Double displacement reaction ~

The products fored are : Lead Iodide ( PbI2 ) and Potassium Nitrate ( KNO3 )
Answer:
Following laboratory safety guidelines minimizes the chance of lab accidents.
Explanation:
A molecular size affects the rate of evaporation when the larger the intermolecular forces in a compound, the slower the evaporation rate and this correlates with temperature change.
Molecular size seems to have an effect on evaporation rates in that the larger a molecule gets or grows from a base chemical formula, its evaporation rate will get slower.
<h3>What is the molecular size?</h3>
This is a measure of the area a molecule occupies in three-dimensional space as this relates to the physical size of an individual molecule.
Hence, we can see that a molecular size affects the rate of evaporation the larger the forces, the lower the rate.
Read more about<em> molecular size</em> here:
brainly.com/question/16616599
#SPJ1
Answer: sun is directly over the equator
Explanation:
There are only two times of the year when the Earth's axis is tilted neither toward nor away from the sun, resulting in a "nearly" equal amount of daylight and darkness at all latitudes.